Learn R Programming

PPtreeViz (version 1.0.3)

PP.Tree.class: Projection pursuit classification tree with various PP indices

Description

Find tree structure using various projection pursuit indices of classification in each split.

Usage

PP.Tree.class(origclass, origdata, PPmethod="LDA",weight=TRUE,r=1,lambda=0.1,
              energy=0,maxiter=50000, ...)

Arguments

origclass
class information vector
origdata
numeric data matrix without class information
PPmethod
method for projection pursuit; "LDA", "PDA", "Lr", "GINI", and "ENTROPY"
weight
weight flag in LDA, PDA and Lr index
r
r in Lr index
lambda
lambda in PDA index
energy
energy parameter
maxiter
number of maximum iteration
...
arguments to be passed to methods

Value

  • Tree.Struct Tree structure of projection pursuit classification tree projbest.node 1-dim optimal projections of each split node splitCutoff.node cutoff values of each split node origclass original class origdata original data

References

Lee, YD, Cook, D., Park JW, and Lee, EK(2013) PPtree: Projection pursuit classification tree, Electronic Journal of Statistics, 7:1369-1386.

Examples

Run this code
data(iris)
Tree.result <- PP.Tree.class(iris[,5],iris[,1:4],"LDA")
Tree.result

Run the code above in your browser using DataLab