Learn R Programming

PPtreeViz (version 1.3.0)

LDAopt: PP optimization using LDA index

Description

PP optimization using LDA index

Usage

LDAopt(origclass,origdata,q=1,weight=TRUE,...)

Arguments

origclass
class information vector of data
origdata
data matrix without class information
q
dimension of projection vector
weight
weight flag in LDA index
...
arguments to be passed to methods

Value

indexbest maximum LDA index valueprojbest optimal q-dimensional projection matrixorigclass original class information vectororigdata original data matrix without class information

Details

Find the q-dimensional optimal projection using LDA projectin pursuit index

References

Lee, EK., Cook, D., Klinke, S., and Lumley, T.(2005) Projection Pursuit for Exploratory Supervised Classification, Journal of Computational and Graphical Statistics, 14(4):831-846.

Examples

Run this code
data(iris)
LDA.proj.result <- LDAopt(iris[,5],iris[,1:4])
LDA.proj.result$indexbest
LDA.proj.result$projbest

Run the code above in your browser using DataLab