Learn R Programming

PPtreeViz (version 1.3.0)

PP.Tree.class: Projection pursuit classification tree

Description

Construct the projection pursuit classification tree

Usage

PP.Tree.class(origclass, origdata, PPmethod="LDA",weight=TRUE, r=1,lambda=0.1,energy=0,maxiter=50000, ...)

Arguments

origclass
class information vector
origdata
numeric data matrix without class information
PPmethod
method for projection pursuit; "LDA", "PDA", "Lr", "GINI", and "ENTROPY"
weight
weight flag in LDA, PDA and Lr index
r
r in Lr index
lambda
lambda in PDA index
energy
parameter for the probability to take new projection
maxiter
maximum iteration number
...
arguments to be passed to methods

Value

Tree.Struct tree structure of projection pursuit classification treeprojbest.node 1 dimensional optimal projections of each node splitsplitCutoff.node cutoff values of each node splitorigclass original classorigdata original data

Details

Find tree structure using various projection pursuit indices of classification in each split.

References

Lee, YD, Cook, D., Park JW, and Lee, EK(2013) PPtree: Projection Pursuit Classification Tree, Electronic Journal of Statistics, 7:1369-1386.

Examples

Run this code
data(iris)
Tree.result <- PP.Tree.class(iris[,5],iris[,1:4],"LDA")
Tree.result

Run the code above in your browser using DataLab