Learn R Programming

PPtreeViz (version 1.3.0)

PP.classify: predict PPtree

Description

predict projection pursuit classification tree

Usage

PP.classify(Tree.result,test.data,Rule,true.class=NULL,...)

Arguments

Tree.result
PPtreeclass object
test.data
the test dataset
Rule
split rule 1: mean of two group means 2: weighted mean of two group means - weight with group size 3: weighted mean of two group means - weight with group sd 4: weighted mean of two group means - weight with group se 5: mean of two group medians 6: weighted mean of two group medians - weight with group size 7: weighted mean of two group median - weight with group IQR 8: weighted mean of two group median - weight with group IQR and size
true.class
true class of test dataset if available
...
arguments to be passed to methods

Value

predict.class predicted classpredict.error number of the prediction errors

Details

Predict class for the test set with the fitted projection pursuit classification tree and calculate prediction error.

References

Lee, YD, Cook, D., Park JW, and Lee, EK(2013) PPtree: Projection Pursuit Classification Tree, Electronic Journal of Statistics, 7:1369-1386.

Examples

Run this code
data(iris)
n <- nrow(iris)
tot <- c(1:n)
n.train <- round(n*0.9)
train <- sample(tot,n.train)
test <- tot[-train]
Tree.result <- PP.Tree.class(iris[train,5],iris[train,1:4],"LDA")
PP.classify(Tree.result,iris[test,1:4],1,iris[test,5])

Run the code above in your browser using DataLab