Learn R Programming

PPtreeViz (version 1.3.0)

PPopt: Projection pursuit optimization

Description

PP optimization using various projection pursuit indices

Usage

PPopt(origclass,origdata,q=1,PPmethod="LDA",weight=TRUE,r=1, lambda=0.1,energy=0,cooling=0.999,TOL=0.0001,maxiter = 50000)

Arguments

origclass
class information vector
origdata
data matrix without class information
q
dimension of projection matrix
PPmethod
method for projection pursuit; "LDA", "PDA", "Lr", "GINI", and "ENTROPY"
weight
weight flag in LDA, PDA and Lr index
r
r in Lr index
lambda
lambda in PDA index
energy
energy parameter
cooling
cooling parameter
TOL
tolerance
maxiter
number of maximum iteration

Value

indexbest maximum LDA index valueprojbest optimal q-dim projection matrixorigclass original class information vectororigdata original data matrix without class information

Details

Find the q-dim optimal projection using various projectin pursuit indices with class information

References

Lee, EK., Cook, D., Klinke, S., and Lumley, T.(2005) Projection Pursuit for exploratory supervised classification, Journal of Computational and Graphical statistics, 14(4):831-846.

Examples

Run this code
data(iris)
PP.proj.result <- PPopt(iris[,5],as.matrix(iris[,1:4]))
PP.proj.result

Run the code above in your browser using DataLab