Find regression tree structure using various projection pursuit indices in each split.
PPTreereg(formula,data,DEPTH=NULL,Rr=1,PPmethod="LDA",
weight=TRUE,lambda=0.1,r=1,TOL.CV=0.1,selP=NULL,
energy=0,maxiter=500,
standardized=TRUE,even=TRUE,space=0,
maxFinalNode=20,maxNodeN=10,...)
Tree.result projection pursuit regression tree result with
PPtreeclass
object format
MSE mean squared error of the final tree
mean.G
means of the observations in the final node
sd.G
standard deviations of the observations in the final node.
coef.G
regression coefficients for Method 3, 4 and 5
origY
original dependent variable vector
origX.mean
mean of original X
origX.sd
standard deviation of original X
class.origX.mean
means of the each independent variables in the final node
an object of class "formula"
data frame
depth of the projection pursuit regression tree
cutoff rule in each node
method for projection pursuit; "LDA"
, "PDA"
, "Lr"
,
"GINI"
, and "ENTROPY"
.
weight flag in LDA
, PDA
and Lr
index
lambda in PDA index
r in Lr index
CV limit for the final node
number of variables for the final node in Method 5
energy parameter
number of maximum iteration
standardize each X variable before fitting the tree structure. Default value is TRUE
divide evenly at each node. Default value is TRUE
space between two groups of dependent variable
maximum number of final node
maximum number of observations in the final node
arguments to be passed to methods
...
data(mtcars)
Tree.result <- PPTreereg(mpg~.,mtcars,DEPTH=2,PPmethod="LDA")
Tree.result
Run the code above in your browser using DataLab