SODEGIRpreprocessingGE(SampleInfoFile = NULL, CELfiles_dir = NULL,
AffyBatchInput = NULL, custom_cdfname, arrayNameColumn = NULL,
sampleNameColumn = NULL, classColumn,
referenceGroupLabel, statisticType, optionalAnnotations = NULL,
retain.chrs = NULL, reference_position_type = "median",
testedTail = "both", singleSampleOutput = TRUE,
varianceAll=FALSE)
"strand.start" is strand specific start: i.e. start on positive strand but end on negative strand. "strand.end" is strand specific end.
The original SODEGIR statistic for Gene Expression was based on the SAM score. Therefore in the current PREDA version the varianceAll=TRUE parameter can be used only for SAM statistic: when singleSampleOutput is TRUE and a different statisticType is used, the variance is actually computed using only the normal (reference) samples.
If FALSE (default value), the computation of statistics for single sample VS reference comparisons only take into account the variance in the reference group of samples.
Then statistics for differential expression are computed comparing each sample with the reference group.
Then annotations are retrieved from the corresponding annotation library.
Please note this function is a user-friendly preprocessing function for Affy gene expression microarrays. Step by step preprocessing functions can be used with any other platform.
preprocessingGE
,
DataForPREDA
## Not run:
# require(PREDAsampledata)
#
# CELfilesPath <- system.file("sampledata", "GeneExpression",
# package = "PREDAsampledata")
#
# infofile <- file.path(CELfilesPath , "sampleinfoGE_PREDA.txt")
#
# SODEGIRGEDataForPREDA<-SODEGIRpreprocessingGE(SampleInfoFile=
# infofile,
# CELfiles_dir=CELfilesPath,
# custom_cdfname="gahgu133plus2",
# arrayNameColumn=1,
# sampleNameColumn=2,
# classColumn="Class",
# referenceGroupLabel="normal",
# statisticType="tstatistic",
# optionalAnnotations=c("SYMBOL", "ENTREZID"),
# retain.chrs=1:22
# )
#
#
# ## End(Not run)
Run the code above in your browser using DataLab