Parametric Simplex Method for Sparse Learning
Description
Implements a unified framework of parametric simplex method for a variety of sparse learning problems (e.g., Dantzig selector (for linear regression), sparse quantile regression, sparse support vector machines, and compressive sensing) combined with efficient hyper-parameter selection strategies. The core algorithm is implemented in C++ with Eigen3 support for portable high performance linear algebra. For more details about parametric simplex method, see Haotian Pang (2017) .