Usage
setHyperparams(shapeAlpha=NULL,rateAlpha=NULL,
aPhi=NULL,mu0=NULL,Tau0=NULL,R0=NULL,
kapp0=NULL,muTheta=NULL,sigmaTheta=NULL,dofTheta=NULL,muBeta=NULL,
sigmaBeta=NULL,dofBeta=NULL,shapeTauEpsilon=NULL,
rateTauEpsilon=NULL,aRho=NULL,bRho=NULL,atomRho=NULL,shapeSigmaSqY=NULL,
scaleSigmaSqY=NULL,rSlice=NULL,truncationEps=NULL)
Arguments
shapeAlpha
The shape parameter for Gamma prior on alpha (default=2)
rateAlpha
The inverse-scale (rate) parameter for the Gamma prior on alpha (default=1)
aPhi
The vector of parameters for the Dirichlet prior on phi_j. Element j corresponds to covariate j which then has a prior Dirichlet(aPhi[j],aPhi[j],....,aPhi[j]). Only used in discrete case, default=(1 1 1 ... 1).
mu0
The mean vector for mu_c in the Normal covariate case (only used in Normal covariate case, default=empirical covariate means)
Tau0
The precision matrix for mu_c in the Normal covariate case (only used in Normal covariate case, default=inverse of diagonal matrix with elements equal to squareof empirical range for each covariate)
R0
The matrix parameter for the Wishart distribution for Tau_c (only used in Normal covariate case, default=1/nCovariates * inverse of empirical covariance matrix)
kapp0
The degrees of freedom parameter for the Wishart distribution for Tau_c (only used in Normal covariate case, default=nCovariates).
muTheta
The location parameter for the t-Distribution for theta_c (only used if response included in model, default=0)
sigmaTheta
The scale parameter for the t-Distribution for theta_c (only used if response included in model, default=2.5)
dofTheta
The degrees of freedom parameter for the t-Distribution for theta_c (only used if response included in model, default=7)
muBeta
The location parameter for the t-Distribution for beta (only used when fixed effects present, default=0)
sigmaBeta
The scale parameter for the t-Distribution for beta (only used when fixed effects present, default=2.5)
dofBeta
The dof parameter for the t-Distribution for beta (only used when fixed effects present, default=7)
shapeTauEpsilon
Shape parameter for gamma distribution for prior for precision tau of extra variation errors epsilon (only used if extra variation is used i.e. extraYVar argument is included, default=5.0)
rateTauEpsilon
Inverse-scale (rate) parameter for gamma distribution for prior for precision tau of extra variation errors epsilon (only used if extra variation is used i.e. extraYVar argument is used, default=0.5)
aRho
Parameter for beta distribution for prior on rho in variable selection (default=0.5)
bRho
Parameter for beta distribution for prior on rho in variable selection (default=0.5)
atomRho
Parameter for the probability for the atom at zero, i.e. the 0.5 probability in w_j distributed Bernoulli(0.5) in the formulation of the sparsity inducing prior (default=0.5). This parameter must be in the interval (0,1], where atomRho=1 corresponds to th
shapeSigmaSqY
Shape parameter of inverse-gamma prior for sigma_Y^2 (only used in the Normal response model, default =2.5)
scaleSigmaSqY
Scale parameter of inverse-gamma prior for sigma_Y^2 (only used in the Normal response model, default =2.5)
rSlice
Slice parameter for independent slice sampler such that xi_c = (1-rSlice)*rSlice^c for c=0,1,2,... (only used for slice independent sampler i.e. sampler=SliceIndependent, default 0.75).
truncationEps
Parameter for determining the truncation level of the finite Dirichlet process (only used for truncated sampler i.e. sampler=Truncated