library(survival)
library(stats)
set.seed(100)
n <- 1000
x <- rnorm(n)
t <- rweibull(n, shape=1/3, scale=exp(x))
c <- rexp(n, 1/3)
y <- pmin(t, c)
d <- ifelse(t<=c, 1, 0)
mod.survreg <- survreg(Surv(y, d) ~ x, dist="weibull")
summary(presid(mod.survreg))
plot(x, presid(mod.survreg))
##### example for proprotional hazards model
n <- 1000
x <- rnorm(n)
beta0 <- 1
beta1 <- 0.5
t <- rexp(n, rate = exp(beta0 + beta1*x))
c <- rexp(n, rate=1)
y <- ifelse(t py[,i])
y <- as.factor(y)
mod.polr <- polr(y~x, method="logistic")
summary(mod.polr)
presid <- presid(mod.polr)
summary(presid)
plot(x, presid, cex=0.4)
Run the code above in your browser using DataLab