Learn R Programming

PSM (version 0.8-12)

Internal functions: Internal functions in the PSM-package.

Description

Internal functions in the PSM-package.

Usage

APL.KF(THETA, Model, Pop.Data, LB = NULL, UB = NULL, GUIFlag = 0, longOutput = FALSE,
       fast=TRUE,Linear=NULL)
APL.KF.gr(THETA, Model, Pop.Data, LB = NULL, UB = NULL, GradSTEP = 1e-04, GUIFlag = 0,
          fast=TRUE,Linear=NULL)
APL.KF.individualloop(theta, OMEGA, Model, Data, GUIFlag = 0, fast=TRUE,Linear)
CutThirdDim(a)
ExtKalmanFilter(phi, Model, Data, outputInternals = FALSE)
ExtKalmanSmoother(phi, Model, Data)
IndividualLL.KF(eta, theta, OMEGA, Model, Data, fast=TRUE,Linear=NULL)
IndividualLL.KF.gr(eta, theta, OMEGA, Model, Data, GradSTEP = 1e-04, GUIFlag = 0,
                   fast=TRUE,Linear=NULL)
LinKalmanFilter(phi, Model, Data, echo = FALSE, outputInternals = FALSE, fast=TRUE)
LinKalmanSmoother(phi, Model, Data)
ModelCheck(Model, Data, Par,DataHasY=TRUE)
logit(x, xmin, xmax)
invlogit(y, xmin, xmax)

Arguments

Details

APK.KF

evaluates the population likelihood function.

APK.KF.gr

evaluates the gradient of APL.KF.

APL.KF.individualloop

contains the innner loop over individuals for APL.KF.

CutThirdDim

removes third and higher dimensions of dim-attribute for an array and thus creating a matrix.

ExtKalmanFilter

Performs a Extended Kalman filtering.

ExtKalmanSmoother

performs a non-linear Kalman smoothing.

IndividualLL.KF

evaluates the indivdual neg. log-likelihood function.

IndividualLL.KF.gr

evaluates the gradient of the indivdual neg. log-likelihood function.

LinKalmanFilter

performs a linear Kalman filtering.

LinKalmanSmoother

performs a linear Kalman smoothing.

ModelCheck

checks for dimensionalities and model objects. Furthermore it tests the Model objects and the dimensions in the Data set.

logit

gives logit transformation of a vector.

invlogit

gives invlogit transformation of a vector.

See Also

PSM