PTAk
data as a ratio Observed/Expected
under complete independence with metrics as margins of the multiple
contingency table (in frequencies).FCAk(X,nbPT=3,nbPT2=1,minpct=0.01,
smoothing=FALSE,smoo=rep(list(
function(u)ksmooth(1:length(u),u,kernel="normal",
bandwidth=3,x.points=(1:length(u)))$y),length(dim(X))),
verbose=getOption("verbose"),file=NULL,
modesnam=NULL,addedcomment="",chi2=TRUE,E=NULL, ...)
SVDgen
SVDgen
NULL
, or printed in the given NULL
"mo 1
"
..."mo k
"printt
after the title of the analysisFCAmet
NULL
is an array with the same dimensions as XFCAk
(inherits PTAk
) objectPTAk
of the
$(k+1)$-uple is done, e.g. for a three way contingency table
$k=3$ the 4-uple data and metrics is:
$$((D_I^{-1} \otimes D_J^{-1} \otimes D_K^{-1})P, \quad D_I, \quad D_J, \quad D_K)$$
where the metrics are diagonals of the corresponding margins. For
full description of arguments see PTAk
. If E
is not NULL
an FCAk-modes relatively to a model is
done (see Escoufier(1985) and therin reference
Escofier(1984) for a 2-way derivation), e.g. for a three way contingency table
$k=3$ the 4-tuple data and metrics is:
$$((D_I^{-1} \otimes D_J^{-1} \otimes D_K^{-1})(P-E), \quad D_I, \quad D_J, \quad D_K)$$
If E
was the complete independence (product of the margins)
then this would give an AFCk
but without looking at the
marginal dependencies (i.e. for a three way table no two-ways lack of
independence are looked for).Leibovici D(1993) Facteurs
Leibovici D (2000) Multiway Multidimensional Analysis for
Pharmaco-EEG Studies.
Leibovici D (2008) Spatio-temporal Multiway Decomposition using Principal Tensor Analysis on k-modes:the R package
PTAk
, FCAmet
, summary.FCAk