Obtains monitor data from an AIRSIS webservice and converts
it into a quality controlled, metadata enhanced ws_monitor object
ready for use with all monitor_~
functions.
Steps involved include:
download CSV text
parse CSV text
apply quality control
apply clustering to determine unique deployments
enhance metadata to include: elevation, timezone, state, country, site name
reshape AIRSIS data into deployment-by-property meta
and and time-by-deployment data
dataframes
QC parameters that can be passed in the …
include the following
valid data ranges as taken from airsis_EBAMQualityControl()
:
valid_Longitude=c(-180,180)
valid_Latitude=c(-90,90)
remove_Lon_zero = TRUE
remove_Lat_zero = TRUE
valid_Flow = c(16.7*0.95,16.7*1.05)
valid_AT = c(-Inf,45)
valid_RHi = c(-Inf,45)
valid_Conc = c(-Inf,5.000)
Note that appropriate values for QC thresholds will depend on the type of monitor.
airsis_createMonitorObject(startdate = strftime(lubridate::now(),
"%Y010100", tz = "UTC"), enddate = strftime(lubridate::now(),
"%Y%m%d23", tz = "UTC"), provider = NULL, unitID = NULL,
clusterDiameter = 1000, zeroMinimum = TRUE,
baseUrl = "http://xxxx.airsis.com/vision/common/CSVExport.aspx?",
saveFile = NULL, existingMeta = NULL, addGoogleMeta = FALSE,
addEsriMeta = FALSE, ...)
desired start date (integer or character representing YYYYMMDD[HH])
desired end date (integer or character representing YYYYMMDD[HH])
identifier used to modify baseURL ['APCD'|'USFS']
character or numeric AIRSIS unit identifier
diameter in meters used to determine the number of clusters (see addClustering()
)
logical specifying whether to convert negative values to zero
base URL for data queries
optional filename where raw CSV will be written
existing 'meta' dataframe from which to obtain metadata for known monitor deployments
logicial specifying wheter to use Google elevation and reverse geocoding services
logicial specifying wheter to use ESRI elevation and reverse geocoding services
additional parameters are passed to type-specific QC functions
A ws_monitor object with AIRSIS data.
# NOT RUN {
initializeMazamaSpatialUtils()
usfs_1013 <- airsis_createMonitorObject(20150301, 20150831, 'USFS', unitID='1013')
monitor_leaflet(usfs_1013)
# }
Run the code above in your browser using DataLab