Learn R Programming

PairedData (version 0.5)

pitman.morgan.test: Pitman-Morgan test of variances for paired samples

Description

Classical test of variance for paired samples based on the bivariate normal distribution

Usage

pitman.morgan.test(x, y = NULL, alternative = c("two.sided", "less", "greater"),
         omega = 1, conf.level = 0.95)

Arguments

x
First sample
y
Second sample
alternative
Alternative hypothesis
omega
A priori ratio of variances
conf.level
Confidence level

Value

  • A list with class "htest" containing the following components:
  • statisticThe value of the F-statistic
  • parameterThe degrees of freedom for the F-statistic
  • p.valueThe p-value for the test
  • conf.intA confidence interval for the ratio of variances appropriate to the specified alternative hypothesis
  • estimateThe estimated variances
  • null.valueThe specified hypothesized value of the ratio of variances
  • alternativeA character string describing the alternative hypothesis
  • methodA character string indicating what type of test was performed
  • data.nameA character string giving the name(s) of the data

References

  • W. A. Morgan. A test for the significance of the difference between two variances in a sample from a normal bivariate distribution. Biometrika, 31, 13-19, 1939.
  • E.J.G. Pitman. A note on normal correlation. Biometrika, 31, 9-12, 1939.

See Also

var.test, bonett.seier.test, grambsch.test

Examples

Run this code
z<-rnorm(20)
x<-rnorm(20)+z
y<-(rnorm(20)+z)*2
pitman.morgan.test(x,y)

Run the code above in your browser using DataLab