############################################################################
## Example code ##
## If you want to use test cases, load the relevant data sets ##
## Select the data set that comes with this package ##
############################################################################
library(ParallelDSM)
data("df.input",package = "ParallelDSM")
data("df.dem",package = "ParallelDSM")
data("df.twi",package = "ParallelDSM")
sampledata <- system.file("extdata", "covariate", package = "ParallelDSM")
ParallelInit_Test(sampledata,df.input,dsmformula = "socd030 ~ twi + dem")
#ParallelComputing(outpath = "qrfOutput",mymodels = "QRF")
############################################################################
## Use the data file references that come with this package ##
############################################################################
# sampledatas <- system.file("extdata", "covariate", package = "ParallelDSM")
############################################################################
## Use ParallelInit_Test functions to process the data that is loaded in ##
############################################################################
# ParallelInit_Test(sampledata,df.input,dsmformula = "socd030 ~ dem + twi")
############################################################################
## This function is the main function that performs parallel computations ##
## The outpath field refers to the filename of the data output ##
## The mymodels field has three modes to choose from: QRF,RF and MLR ##
## 'QRF' stands for Random Forest Model Prediction Method ##
## 'RF' stands for Machine Learning Model Prediction Method ##
## 'MLR' stands for Multiple Linear Regression Prediction Model ##
## 'from' and 'to' are reserved fields that can be left unused by the user##
############################################################################
# ParallelComputing(outpath = "myoutputs",mymodels = "MLR",from=1,to=200)
Run the code above in your browser using DataLab