Param
by adding a few more
attributes, like a default value, whether it refers to a
training or a predict function, etc.makeNumericLearnerParam(id, lower = -Inf, upper = Inf,
default, pass.default = FALSE, when = "train",
requires = expression()) makeNumericVectorLearnerParam(id,
length = as.integer(NA), lower = -Inf, upper = Inf,
default, pass.default = FALSE, when = "train",
requires = expression())
makeIntegerLearnerParam(id, lower = -Inf, upper = Inf,
default, pass.default = FALSE, when = "train",
requires = expression())
makeIntegerVectorLearnerParam(id,
length = as.integer(NA), lower = -Inf, upper = Inf,
default, pass.default = FALSE, when = "train",
requires = expression())
makeDiscreteLearnerParam(id, values, default,
pass.default = FALSE, when = "train",
requires = expression())
makeDiscreteVectorLearnerParam(id,
length = as.integer(NA), values, default,
pass.default = FALSE, when = "train",
requires = expression())
makeLogicalLearnerParam(id, default,
pass.default = FALSE, when = "train",
requires = expression())
makeUntypedLearnerParam(id, default,
pass.default = FALSE, when = "train",
requires = expression())
makeFunctionLearnerParam(id, default,
pass.default = FALSE, when = "train",
requires = expression())
character(1)
] Name of parameter.integer(1)
]
Length of vector.numeric
]
Lower bound. Default is
-Inf
.numeric
]
Upper bound. Default is
Inf
.vector
| list
]
Possible
discrete values. You are allowed to pass a list of
complex R values, which are used as discrete choices. If
you do the latter, the elements must be uniquely named,
so that the names can be used aslogical(1)
]
Should the
default value be always passed to the learner? Default
is FALSE
.character(1)
]
Specifies when
parameter is used in the learner: expression
]
R expression over
the other parameters to define requirements when this
parameter is effective.LearnerParam
].