Param by adding a few more attributes,
like a default value, whether it refers to a training or a predict function, etc.makeNumericLearnerParam(id, lower = -Inf, upper = Inf, default,
when = "train", requires = NULL)makeNumericVectorLearnerParam(id, len = as.integer(NA), lower = -Inf,
upper = Inf, default, when = "train", requires = NULL)
makeIntegerLearnerParam(id, lower = -Inf, upper = Inf, default,
when = "train", requires = NULL)
makeIntegerVectorLearnerParam(id, len = as.integer(NA), lower = -Inf,
upper = Inf, default, when = "train", requires = NULL)
makeDiscreteLearnerParam(id, values, default, when = "train",
requires = NULL)
makeDiscreteVectorLearnerParam(id, len = as.integer(NA), values, default,
when = "train", requires = NULL)
makeLogicalLearnerParam(id, default, when = "train", requires = NULL)
makeLogicalVectorLearnerParam(id, len = as.integer(NA), default,
when = "train", requires = NULL)
makeUntypedLearnerParam(id, default, when = "train", requires = NULL)
makeFunctionLearnerParam(id, default, when = "train", requires = NULL)
character(1)]
See Param.integer(1)]
See Param.numeric]
See Param.numeric]
See Param.vector | list]
See Param.NULL | R expression]
See Param.Param.character(1)]
Specifies when parameter is used in the learner: LearnerParam].Param which additionally stores these elements:
[object Object],[object Object],[object Object]