PPS.fit()
returns the fit of a PPS distribution to real data, allowing the scale parameter to be held fixed if desired.PPS.fit(x, estim.method = "MLE", sigma = NULL, start, Pareto = FALSE, ...)
NULL
, the parameter is estimated.PPSfit
Object, a list with"LMOM"
the function also returns details about the convergence of the numerical method involved (convergence
value).estim.method = "MLE"
. The numerical algorithm to search the optimum is the ``Nelder-Mead'' method implemented in the optim
function, considering as initial values those given in the start
argument or, if it is missing, those provided by the OLS method.
A different approximation of the maximum likelihood estimates is given by estim method = "iMLE"
; it is an iterative methodology where optimize()
function provides the optimum scale parameter value, while the uniroot()
function solve normal equations for that given scale parameter.
The regression estimates ("OLS"
) searchs an optimum scale value (in a OLS criterion) by the optimize()
function. Then the rest of the parameters are estimated also by OLS, as appears in Sarabia and Prieto (2009).
In the L-moments method ("LMOM"
) estimates are obtained searching parameters that equal the first three sample and theoretical L-moments by means of the ``Nelder-Mead'' algorithm implemented in optim()
; the initial values are given in the start
argument or, if it is missing, provided by the "iMLE"
.PPS.fit
, coef.PPSfit
, print.PPSfit
, plot.PPSfit
, GoF.PPSfit
x <- rPPS(50, 1.2, 100, 2.3)
fit <- PPS.fit(x)
print(fit)
coef(fit)
se.PPSfit(fit, k = 50, show.iters = FALSE)
logLik(fit)
par(mfrow=c(2,2))
plot(fit)
GoF.PPSfit(fit, k = 50, show.iters = FALSE)
Run the code above in your browser using DataLab