Learn R Programming

PatientLevelPrediction (version 3.0.0)

setGradientBoostingMachine: Create setting for gradient boosting machine model using gbm_xgboost implementation

Description

Create setting for gradient boosting machine model using gbm_xgboost implementation

Usage

setGradientBoostingMachine(ntrees = c(10, 100), nthread = 20,
  maxDepth = c(4, 6, 17), minRows = 20, learnRate = c(0.01, 0.1),
  seed = NULL)

Arguments

ntrees

The number of trees to build

nthread

The number of computer threads to (how many cores do you have?)

maxDepth

Maximum number of interactions - a large value will lead to slow model training

minRows

The minimum number of rows required at each end node of the tree

learnRate

The boosting learn rate

seed

An option to add a seed when training the final model

Examples

Run this code
# NOT RUN {
model.gbm <- setGradientBoostingMachine(ntrees=c(10,100), nthread=20,
                           maxDepth=c(4,6), learnRate=c(0.1,0.3))

# }

Run the code above in your browser using DataLab