# NOT RUN {
#******** EXAMPLE 1 ********* 
#load plpData:
plpData <- loadPlpData(file.path('C:','User','home','data'))
#create study population to develop model on
#require minimum of 365 days observation prior to at risk start
#no prior outcome and person must be observed for 365 after index (minTimeAtRisk)
#with risk window from 0 to 365 days after index
population <- createStudyPopulation(plpData,outcomeId=2042,
                                    firstExposureOnly = FALSE,
                                    washoutPeriod = 365,
                                    removeSubjectsWithPriorOutcome = TRUE,
                                    priorOutcomeLookback = 99999,
                                    requireTimeAtRisk = TRUE,
                                    minTimeAtRisk=365,
                                    riskWindowStart = 0,
                                    addExposureDaysToStart = FALSE,
                                    riskWindowEnd = 365,
                                    addExposureDaysToEnd = FALSE)
#lasso logistic regression predicting outcome 200 in cohorts 10 
#using no feature selection with a time split evaluation with 30% in test set
#70% in train set where the model hyper-parameters are selected using 3-fold cross validation:
#and results are saved to file.path('C:','User','home')
model.lr <- lassoLogisticRegression.set()
mod.lr <- runPlp(population=population,
                        plpData= plpData, minCovariateFraction = 0.001,
                        modelSettings = model.lr ,
                        testSplit = 'time', testFraction=0.3, 
                        nfold=3, indexes=NULL,
                        saveDirectory =file.path('C:','User','myPredictionName'),
                        verbosity='INFO')
 
#******** EXAMPLE 2 *********                                               
# Gradient boosting machine with a grid search to select hyper parameters  
# using the test/train/folds created for the lasso logistic regression above                       
model.gbm <- gradientBoostingMachine.set(rsampRate=c(0.5,0.9,1),csampRate=1, 
                           ntrees=c(10,100), bal=c(F,T),
                           max_depth=c(4,5), learn_rate=c(0.1,0.01))
mod.gbm <- runPlp(population=population,
                        plpData= plpData,
                        modelSettings = model.gbm,
                        testSplit = 'time', testFraction=0.3, 
                        nfold=3, indexes=mod.lr$indexes,
                        saveDirectory =file.path('C:','User','myPredictionName2'))
# }
Run the code above in your browser using DataLab