powered by
Create setting for Iterative Hard Thresholding model
setIterativeHardThresholding( K = 10, penalty = "bic", seed = sample(1e+05, 1), exclude = c(), forceIntercept = FALSE, fitBestSubset = FALSE, initialRidgeVariance = 0.1, tolerance = 1e-08, maxIterations = 10000, threshold = 1e-06, delta = 0 )
modelSettings object
modelSettings
The maximum number of non-zero predictors
Specifies the IHT penalty; possible values are BIC or AIC or a numeric value
BIC
AIC
An option to add a seed when training the model
A vector of numbers or covariateId names to exclude from prior
Logical: Force intercept coefficient into regularization
Logical: Fit final subset with no regularization
integer
numeric
if (FALSE) { # rlang::is_installed("IterativeHardThresholding") modelIht <- setIterativeHardThresholding(K = 5, seed = 42) }
Run the code above in your browser using DataLab