
Last chance! 50% off unlimited learning
Sale ends in
hist
, see the help for that function for additional arguments you may wish to pass in.chart.Histogram(R, breaks="FD", main = NULL, xlab = "Returns", ylab = "Frequency", methods = c("none","add.density", "add.normal", "add.centered", "add.cauchy", "add.sst", "add.rug", "add.risk", "add.qqplot"), show.outliers = TRUE, colorset = c("lightgray", "#00008F", "#005AFF", "#23FFDC", "#ECFF13", "#FF4A00", "#800000"), border.col = "white", lwd = 2, xlim = NULL, ylim = NULL, element.color="darkgray", note.lines = NULL, note.labels = NULL, note.cex = 0.7, note.color = "darkgray", probability = FALSE, p = 0.95, cex.axis = 0.8, cex.legend = 0.8, cex.lab = 1, cex.main = 1, xaxis=TRUE, yaxis=TRUE, ...)
plot
breaks
is "FD"
. Other names for which algorithms
are supplied are "Sturges"
(see
nclass.Sturges
), "Scott"
, and "FD"
/
"Freedman-Diaconis"
(with corresponding functions
nclass.scott
and nclass.FD
).
Case is ignored and partial matching is used.
Alternatively, a function can be supplied which
will compute the intended number of breaks as a function of R
.hist
data(edhec)
chart.Histogram(edhec[,'Equity Market Neutral',drop=FALSE])
# version with more breaks and the standard close fit density distribution
chart.Histogram(edhec[,'Equity Market Neutral',drop=FALSE], breaks=40, methods = c("add.density", "add.rug") )
chart.Histogram(edhec[,'Equity Market Neutral',drop=FALSE], methods = c( "add.density", "add.normal") )
# version with just the histogram and normal distribution centered on 0
chart.Histogram(edhec[,'Equity Market Neutral',drop=FALSE], methods = c( "add.density", "add.centered") )
# add a rug to the previous plot for more granularity on precisely where the distribution fell
chart.Histogram(edhec[,'Equity Market Neutral',drop=FALSE], methods = c( "add.centered", "add.density", "add.rug") )
# now show a qqplot to give us another view on how normal the data are
chart.Histogram(edhec[,'Equity Market Neutral',drop=FALSE], methods = c( "add.centered", "add.density", "add.rug", "add.qqplot") )
# add risk measure(s) to show where those are in relation to observed returns
chart.Histogram(edhec[,'Equity Market Neutral',drop=FALSE], methods = c("add.density", "add.centered", "add.rug", "add.risk") )
Run the code above in your browser using DataLab