
hist
, see the help for that
function for additional arguments you may wish to pass
in.chart.Histogram(R, breaks = "FD", main = NULL,
xlab = "Returns", ylab = "Frequency",
methods = c("none", "add.density", "add.normal", "add.centered", "add.cauchy", "add.sst", "add.rug", "add.risk", "add.qqplot"),
show.outliers = TRUE,
colorset = c("lightgray", "#00008F", "#005AFF", "#23FFDC", "#ECFF13", "#FF4A00", "#800000"),
border.col = "white", lwd = 2, xlim = NULL,
ylim = NULL, element.color = "darkgray",
note.lines = NULL, note.labels = NULL, note.cex = 0.7,
note.color = "darkgray", probability = FALSE, p = 0.95,
cex.axis = 0.8, cex.legend = 0.8, cex.lab = 1,
cex.main = 1, xaxis = TRUE, yaxis = TRUE, ...)
plot
plot
plot
plot
plot
plot
plot
.plot
breaks
is "FD"
. Other names
for which algorithms are supplied are "Sturges"
(see nclass.Sturges
), "Scott"
, and
"FD"
/ "Freedman-Diaconis"
(with
corresponding functions nclass.scott
and
nclass.FD
). Case is ignored and partial
matching is used. Alternatively, a function can be
supplied which will compute the intended number of breaks
as a function of R
.hist
data(edhec)
chart.Histogram(edhec[,'Equity Market Neutral',drop=FALSE])
# version with more breaks and the
# standard close fit density distribution
chart.Histogram(edhec[,'Equity Market Neutral',drop=FALSE],
breaks=40, methods = c("add.density", "add.rug") )
chart.Histogram(edhec[,'Equity Market Neutral',drop=FALSE],
methods = c( "add.density", "add.normal") )
# version with just the histogram and
# normal distribution centered on 0
chart.Histogram(edhec[,'Equity Market Neutral',drop=FALSE],
methods = c( "add.density", "add.centered") )
# add a rug to the previous plot
# for more granularity on precisely where the distribution fell
chart.Histogram(edhec[,'Equity Market Neutral',drop=FALSE],
methods = c( "add.centered", "add.density", "add.rug") )
# now show a qqplot to give us another view
# on how normal the data are
chart.Histogram(edhec[,'Equity Market Neutral',drop=FALSE],
methods = c("add.centered","add.density","add.rug","add.qqplot"))
# add risk measure(s) to show where those are
# in relation to observed returns
chart.Histogram(edhec[,'Equity Market Neutral',drop=FALSE],
methods = c("add.density","add.centered","add.rug","add.risk"))
Run the code above in your browser using DataLab