PerformanceAnalytics (version 1.5.3)

ETL: calculates Expected Shortfall(ES) (or Conditional Value-at-Risk(CVaR) for univariate and component, using a variety of analytical methods.

Description

Calculates Expected Shortfall(ES) (also known as) Conditional Value at Risk(CVaR) or Expected Tail Loss (ETL) for univariate, component, and marginal cases using a variety of analytical methods.

Usage

ETL(R = NULL, p = 0.95, ..., method = c("modified", "gaussian",
  "historical"), clean = c("none", "boudt", "geltner"),
  portfolio_method = c("single", "component"), weights = NULL,
  mu = NULL, sigma = NULL, m3 = NULL, m4 = NULL, invert = TRUE,
  operational = TRUE)

Arguments

R

a vector, matrix, data frame, timeSeries or zoo object of asset returns

p

confidence level for calculation, default p=.95

any other passthru parameters

method

one of "modified","gaussian","historical", see Details.

clean

method for data cleaning through Return.clean. Current options are "none", "boudt", or "geltner".

portfolio_method

one of "single","component","marginal" defining whether to do univariate, component, or marginal calc, see Details.

weights

portfolio weighting vector, default NULL, see Details

mu

If univariate, mu is the mean of the series. Otherwise mu is the vector of means of the return series, default NULL, see Details

sigma

If univariate, sigma is the variance of the series. Otherwise sigma is the covariance matrix of the return series, default NULL, see Details

m3

If univariate, m3 is the skewness of the series. Otherwise m3 is the coskewness matrix (or vector with unique coskewness values) of the returns series, default NULL, see Details

m4

If univariate, m4 is the excess kurtosis of the series. Otherwise m4 is the cokurtosis matrix (or vector with unique cokurtosis values) of the return series, default NULL, see Details

invert

TRUE/FALSE whether to invert the VaR measure, see Details.

operational

TRUE/FALSE, default TRUE, see Details.

Background

This function provides several estimation methods for the Expected Shortfall (ES) (also called Expected Tail Loss (ETL) or Conditional Value at Risk (CVaR)) of a return series and the Component ES (ETL/CVaR) of a portfolio.

At a preset probability level denoted \(c\), which typically is between 1 and 5 per cent, the ES of a return series is the negative value of the expected value of the return when the return is less than its \(c\)-quantile. Unlike value-at-risk, conditional value-at-risk has all the properties a risk measure should have to be coherent and is a convex function of the portfolio weights (Pflug, 2000). With a sufficiently large data set, you may choose to estimate ES with the sample average of all returns that are below the \(c\) empirical quantile. More efficient estimates of VaR are obtained if a (correct) assumption is made on the return distribution, such as the normal distribution. If your return series is skewed and/or has excess kurtosis, Cornish-Fisher estimates of ES can be more appropriate. For the ES of a portfolio, it is also of interest to decompose total portfolio ES into the risk contributions of each of the portfolio components. For the above mentioned ES estimators, such a decomposition is possible in a financially meaningful way.

Univariate estimation of ES

The ES at a probability level \(p\) (e.g. 95%) is the negative value of the expected value of the return when the return is less than its \(c=1-p\) quantile. In a set of returns for which sufficently long history exists, the per-period ES can be estimated by the negative value of the sample average of all returns below the quantile. This method is also sometimes called “historical ES”, as it is by definition ex post analysis of the return distribution, and may be accessed with method="historical".

When you don't have a sufficiently long set of returns to use non-parametric or historical ES, or wish to more closely model an ideal distribution, it is common to us a parmetric estimate based on the distribution. Parametric ES does a better job of accounting for the tails of the distribution by more precisely estimating shape of the distribution tails of the risk quantile. The most common estimate is a normal (or Gaussian) distribution \(R\sim N(\mu,\sigma)\) for the return series. In this case, estimation of ES requires the mean return \(\bar{R}\), the return distribution and the variance of the returns \(\sigma\). In the most common case, parametric VaR is thus calculated by

$$\sigma=variance(R)$$

$$ES=-\bar{R} + \sqrt{\sigma} \cdot \frac{1}{c}\phi(z_{c}) $$

where \(z_{c}\) is the \(c\)-quantile of the standard normal distribution. Represented in R by qnorm(c), and may be accessed with method="gaussian". The function \(\phi\) is the Gaussian density function.

The limitations of Gaussian ES are well covered in the literature, since most financial return series are non-normal. Boudt, Peterson and Croux (2008) provide a modified ES calculation that takes the higher moments of non-normal distributions (skewness, kurtosis) into account through the use of a Cornish-Fisher expansion, and collapses to standard (traditional) Gaussian ES if the return stream follows a standard distribution. More precisely, for a loss probability \(c\), modified ES is defined as the negative of the expected value of all returns below the \(c\) Cornish-Fisher quantile and where the expectation is computed under the second order Edgeworth expansion of the true distribution function.

Modified expected shortfall should always be larger than modified Value at Risk. Due to estimation problems, this might not always be the case. Set Operational = TRUE to replace modified ES with modified VaR in the (exceptional) case where the modified ES is smaller than modified VaR.

References

Boudt, Kris, Peterson, Brian, and Christophe Croux. 2008. Estimation and decomposition of downside risk for portfolios with non-normal returns. 2008. The Journal of Risk, vol. 11, 79-103.

Cont, Rama, Deguest, Romain and Giacomo Scandolo. Robustness and sensitivity analysis of risk measurement procedures. Financial Engineering Report No. 2007-06, Columbia University Center for Financial Engineering.

Laurent Favre and Jose-Antonio Galeano. Mean-Modified Value-at-Risk Optimization with Hedge Funds. Journal of Alternative Investment, Fall 2002, v 5.

Martellini, L. and Ziemann, V., 2010. Improved estimates of higher-order comoments and implications for portfolio selection. Review of Financial Studies, 23(4):1467-1502.

Pflug, G. Ch. Some remarks on the value-at-risk and the conditional value-at-risk. In S. Uryasev, ed., Probabilistic Constrained Optimization: Methodology and Applications, Dordrecht: Kluwer, 2000, 272-281.

Scaillet, Olivier. Nonparametric estimation and sensitivity analysis of expected shortfall. Mathematical Finance, 2002, vol. 14, 74-86.

See Also

VaR SharpeRatio.modified chart.VaRSensitivity Return.clean

Examples

Run this code
# NOT RUN {
    data(edhec)

    # first do normal ES calc
    ES(edhec, p=.95, method="historical")

    # now use Gaussian
    ES(edhec, p=.95, method="gaussian")

    # now use modified Cornish Fisher calc to take non-normal distribution into account
    ES(edhec, p=.95, method="modified")

    # now use p=.99
    ES(edhec, p=.99)
    # or the equivalent alpha=.01
    ES(edhec, p=.01)

    # now with outliers squished
    ES(edhec, clean="boudt")

    # add Component ES for the equal weighted portfolio
    ES(edhec, clean="boudt", portfolio_method="component")
    
# }

Run the code above in your browser using DataLab