Learn R Programming

PharmacoGx (version 1.1.6)

gwc: Calculate the gwc score between two vectors, using either a weighted spearman or pearson correlation

Description

Calculate the gwc score between two vectors, using either a weighted spearman or pearson correlation

Usage

gwc(x1, p1, x2, p2, method.cor = c("pearson", "spearman"), nperm = 10000, truncate.p = 1e-16, ...)

Arguments

x1
numeric vector of effect sizes (e.g., fold change or t statitsics) for the first experiment
p1
numeric vector of p-values for each corresponding effect size for the first experiment
x2
numeric effect size (e.g., fold change or t statitsics) for the second experiment
p2
numeric vector of p-values for each corresponding effect size for the second experiment
method.cor
character string identifying if a pearson or spearman correlation should be used
nperm
numeric how many permutations should be done to determine
truncate.p
numeric Truncation value for extremely low p-values
...
Other passed down to internal functions

Value

numeric a vector of two values, the correlation and associated p-value.

Examples

Run this code
data(CCLEsmall)
x <- molecularProfiles(CCLEsmall,"rna")[,1]
y <- molecularProfiles(CCLEsmall,"rna")[,2]
x_p <- rep(0.05, times=length(x))
y_p <- rep(0.05, times=length(y))
names(x_p) <- names(x)
names(y_p) <- names(y)
gwc(x,x_p,y,y_p, nperm=100)

Run the code above in your browser using DataLab