##===========================##
## For continuous univariate ##
##===========================##
subintensity_matrix <- matrix(c(-1.5, 1.5, 0,
0, -1, 1,
0, 0, -0.5),
ncol = 3,
byrow = TRUE)
PH(subintensity_matrix)
#---
subintensity_matrix <- matrix(c(-1.5, 1.5, 0,
0, -1, 1,
0, 0, -0.5),
ncol = 3,
byrow = TRUE)
initial_probabilities <- c(0.9, 0.1, 0)
PH(subintensity_matrix, initial_probabilities)
##=========================##
## For discrete univariate ##
##=========================##
subintensity_matrix <- matrix(c(0.4, 0.24, 0.12,
0, 0.4, 0.2,
0, 0, 0.5),
ncol = 3,
byrow = TRUE)
DPH(subintensity_matrix)
#---
subintensity_matrix <- matrix(c(0.4, 0.24, 0.12,
0, 0.4, 0.2,
0, 0, 0.5),
ncol = 3,
byrow = TRUE)
initial_probabilities <- c(0.9, 0.1, 0)
DPH(subintensity_matrix, initial_probabilities)
##=============================##
## For continuous multivariate ##
##=============================##
subintensity_matrix <- matrix(c(-3, 2, 0,
0, -2, 1,
0, 0, -1),
nrow = 3,
byrow = TRUE)
reward_matrix = matrix(sample(seq(0, 10, 0.1), 6), nrow = 3, ncol = 2)
initial_probabilities = c(1, 0, 0)
MPH(subintensity_matrix,
initial_probabilities,
reward_matrix)
##===========================##
## For discrete multivariate ##
##===========================##
subintensity_matrix <- matrix(c(0.4, 0.24, 0.12,
0, 0.4, 0.2,
0, 0, 0.5),
ncol = 3,
byrow = TRUE)
reward_matrix <- matrix(sample(seq(0, 10), 6), nrow = 3, ncol = 2)
initial_probabilities = c(1, 0, 0)
MDPH(subintensity_matrix,
initial_probabilities,
reward_mat = reward_matrix)
Run the code above in your browser using DataLab