Learn R Programming

PoSIAdjRSquared

The PoSIAdjRSquared package allows users to calculate p-values and confidence intervals for regression coefficients after they have been selected by adjusted R squared in linear models. The p-values and confidence intervals are valid after model selection with the same data. This allows the user to use all data for both model selection and inference without losing control over the type I error rate. The provided tests are more powerful than data splitting, which bases inference on less data since it discards all information used for selection.

Example

This is a basic example which shows you how to calculate post-selection p-values and confidence intervals for some generated data. The code is similarly applicable to real data.

library(PoSIAdjRSquared)

# Generate data
Data <- datagen.norm(seed = 7, n = 100, p = 10, rho = 0, beta_vec = c(1,0.5,0,0.5,0,0,0,0,0,0))
	X <- Data$X
  	y <- Data$y

selective_inference(y, X, intercept=FALSE, model_set = "fit_all_subset_linear_models", alpha=0.05, confidence_interval=TRUE)

# $summary
# Variable Coefficient  Std_Error     P_Value    CI_Lower  CI_Upper
# 1        1   1.2550561 0.10171810 0.000000000  1.00651134 1.4543199
# 2        2   0.3710123 0.10468937 0.322730857 -0.04019441 0.5530123
# 3        4   0.3291952 0.09248687 0.001782217  0.12471371 0.5104508
# 4        5  -0.1234033 0.10508632 0.841042743 -0.23945366 0.1111173
# 5        8   0.1358987 0.09710654 0.548071861 -0.08495766 0.3009992
# 6       10   0.1196511 0.09917412 0.997850742 -0.10880178 0.2263758

Reference

Pirenne, S. and Claeskens, G. (2024). Exact post-selection inference for adjusted R squared selection. Statistics & Probability Letters, 211(110133):1-9. https://doi.org/10.1016/j.spl.2024.110133

Copy Link

Version

Install

install.packages('PoSIAdjRSquared')

Monthly Downloads

283

Version

0.1.0

License

MIT + file LICENSE

Maintainer

Sarah Pirenne

Last Published

July 4th, 2025

Functions in PoSIAdjRSquared (0.1.0)

pivot_with_specified_interval

Pivot with specified interval
construct_adj_r_squared

Construct adjusted R squared
postselp_value_specified_interval

Post-selection p-value specified interval
datagen.norm

Data generation normal
construct_selection_event

Construct selection event
equal_tailed_interval

Equal tailed interval
compute_ci_with_specified_interval

Compute post-selection confidence interval with specified interval
f

f
construct_test_statistic

Construct test statistic
fit_all_subset_linear_models

Fit all subset linear models
find_root

Find root
solve_selection_event

Solve selection event
fit_specified_size_subset_linear_models

Fit all linear models of a specified size
selective_inference

Selective inference
datagen.norm.intercept

Data generation normal with intercept