
Last chance! 50% off unlimited learning
Sale ends in
The function performs a linearization of the model with respect to the residual variability and then the between subject variability. Derivative of model w.r.t. eps then eta, evaluated at eps=0 and b=b_ind.
LinMatrixLH(model_switch, xt_ind, x, a, bpop, b_ind, bocc_ind, NumEPS, poped.db)
A matrix that is the same size as xt, specifying which model each sample belongs to.
A vector of the individual/group sample times
A matrix for the discrete design variables. Each row is a group.
A matrix of covariates. Each row is a group.
The fixed effects parameter values. Supplied as a vector.
vector of individual realization of the BSV terms b
Vector of individual realizations of the BOV terms bocc
The number of eps() terms in the model.
A PopED database.
A matrix of size (samples per individual x (number of sigma x number of omega))
Other FIM: LinMatrixH
,
LinMatrixL_occ
,
calc_ofv_and_fim
,
ed_laplace_ofv
, ed_mftot
,
efficiency
,
evaluate.e.ofv.fim
,
evaluate.fim
, gradf_eps
,
mf3
, mf5
, mf6
,
mf7
, mf8
,
mftot0
, mftot1
,
mftot2
, mftot3
,
mftot4
, mftot5
,
mftot6
, mftot7
,
mftot
, mf
,
ofv_criterion
, ofv_fim
# NOT RUN {
library(PopED)
############# START #################
## Create PopED database
## (warfarin model for optimization)
#####################################
## Warfarin example from software comparison in:
## Nyberg et al., "Methods and software tools for design evaluation
## for population pharmacokinetics-pharmacodynamics studies",
## Br. J. Clin. Pharm., 2014.
## Optimization using an additive + proportional reidual error
## to avoid sample times at very low concentrations (time 0 or very late samples).
## find the parameters that are needed to define from the structural model
ff.PK.1.comp.oral.sd.CL
## -- parameter definition function
## -- names match parameters in function ff
sfg <- function(x,a,bpop,b,bocc){
parameters=c(CL=bpop[1]*exp(b[1]),
V=bpop[2]*exp(b[2]),
KA=bpop[3]*exp(b[3]),
Favail=bpop[4],
DOSE=a[1])
return(parameters)
}
## -- Define initial design and design space
poped.db <- create.poped.database(ff_file="ff.PK.1.comp.oral.sd.CL",
fg_file="sfg",
fError_file="feps.add.prop",
bpop=c(CL=0.15, V=8, KA=1.0, Favail=1),
notfixed_bpop=c(1,1,1,0),
d=c(CL=0.07, V=0.02, KA=0.6),
sigma=c(0.01,0.25),
groupsize=32,
xt=c( 0.5,1,2,6,24,36,72,120),
minxt=0.01,
maxxt=120,
a=70,
mina=0.01,
maxa=100)
############# END ###################
## Create PopED database
## (warfarin model for optimization)
#####################################
#for the FOI approximation
ind=1
poped.db$settings$iApproximationMethod=3 # FOI approximation method
LinMatrixLH(model_switch=t(poped.db$design$model_switch[ind,,drop=FALSE]),
xt_ind=t(poped.db$design$xt[ind,,drop=FALSE]),
x=zeros(0,1),
a=t(poped.db$design$a[ind,,drop=FALSE]),
bpop=poped.db$parameters$bpop[,2,drop=FALSE],
b_ind=zeros(poped.db$parameters$NumRanEff,1),
bocc_ind=zeros(poped.db$parameters$NumDocc,1),
NumEPS=size(poped.db$parameters$sigma,1),
poped.db)["y"]
# }
Run the code above in your browser using DataLab