library(PopED)
##-- Model: One comp first order absorption
## -- Analytic solution for both mutiple and single dosing
ff <- function(model_switch,xt,parameters,poped.db){
with(as.list(parameters),{
y=xt
N = floor(xt/TAU)+1
y=(DOSE*Favail/V)*(KA/(KA - CL/V)) *
(exp(-CL/V * (xt - (N - 1) * TAU)) * (1 - exp(-N * CL/V * TAU))/(1 - exp(-CL/V * TAU)) -
exp(-KA * (xt - (N - 1) * TAU)) * (1 - exp(-N * KA * TAU))/(1 - exp(-KA * TAU)))
return(list( y=y,poped.db=poped.db))
})
}
## -- parameter definition function
## -- names match parameters in function ff
sfg <- function(x,a,bpop,b,bocc){
parameters=c( V=bpop[1]*exp(b[1]),
KA=bpop[2]*exp(b[2]),
CL=bpop[3]*exp(b[3]),
Favail=bpop[4],
DOSE=a[1],
TAU=a[2])
return( parameters )
}
## -- Residual unexplained variablity (RUV) function
## -- Additive + Proportional
feps <- function(model_switch,xt,parameters,epsi,poped.db){
returnArgs <- do.call(poped.db$model$ff_pointer,list(model_switch,xt,parameters,poped.db))
y <- returnArgs[[1]]
poped.db <- returnArgs[[2]]
y = y*(1+epsi[,1])+epsi[,2]
return(list( y= y,poped.db =poped.db ))
}
## -- Define design and design space
poped.db <- create.poped.database(ff_fun=ff,
fg_fun=sfg,
fError_fun=feps,
bpop=c(V=72.8,KA=0.25,CL=3.75,Favail=0.9),
notfixed_bpop=c(1,1,1,0),
d=c(V=0.09,KA=0.09,CL=0.25^2),
sigma=c(0.04,5e-6),
notfixed_sigma=c(0,0),
m=2,
groupsize=20,
xt=c( 1,2,8,240,245),
minxt=c(0,0,0,240,240),
maxxt=c(10,10,10,248,248),
bUseGrouped_xt=1,
a=list(c(DOSE=20,TAU=24),c(DOSE=40, TAU=24)),
maxa=c(DOSE=200,TAU=24),
mina=c(DOSE=0,TAU=24))
## create plot of model without variability
plot_model_prediction(poped.db, model_num_points = 300)
if (FALSE) {
## create plot of model with variability
plot_model_prediction(poped.db, IPRED=T, DV=T, separate.groups=T, model_num_points = 300)
}
## evaluate initial design
evaluate_design(poped.db)
if (FALSE) {
# Optimization of sample times
output <- poped_optim(poped.db, opt_xt=TRUE, parallel = TRUE)
summary(output)
get_rse(output$FIM, output$poped.db)
plot_model_prediction(output$poped.db)
# Optimization of sample times and doses
output_2 <- poped_optim(poped.db, opt_xt=TRUE, opt_a=TRUE, parallel = TRUE)
summary(output_2)
get_rse(output_2$FIM,output_2$poped.db)
plot_model_prediction(output_2$poped.db)
# Optimization of sample times with only integer time points in design space
# faster than continuous optimization in this case
poped.db.discrete <- create.poped.database(ff_fun=ff,
fg_fun=sfg,
fError_fun=feps,
bpop=c(V=72.8,KA=0.25,CL=3.75,Favail=0.9),
notfixed_bpop=c(1,1,1,0),
d=c(V=0.09,KA=0.09,CL=0.25^2),
sigma=c(0.04,5e-6),
notfixed_sigma=c(0,0),
m=2,
groupsize=20,
xt=c( 1,2,8,240,245),
minxt=c(0,0,0,240,240),
maxxt=c(10,10,10,248,248),
discrete_xt = list(0:248),
bUseGrouped_xt=1,
a=list(c(DOSE=20,TAU=24),c(DOSE=40, TAU=24)),
maxa=c(DOSE=200,TAU=24),
mina=c(DOSE=0,TAU=24),
ourzero = 0)
output_discrete <- poped_optim(poped.db.discrete, opt_xt=T, parallel = TRUE)
summary(output_discrete)
get_rse(output_discrete$FIM,output_discrete$poped.db)
plot_model_prediction(output_discrete$poped.db)
# Efficiency of sampling windows
plot_efficiency_of_windows(output_discrete$poped.db,xt_windows=0.5)
plot_efficiency_of_windows(output_discrete$poped.db,xt_windows=1)
}
Run the code above in your browser using DataLab