# Folowing the examples presented in Retout, 2007
ff <- function(model_switch,xt,parameters,poped.db){
with(as.list(parameters),{
lambda1 <- lam1a
if(TREAT==2) lambda1 <- lam1b
y=log10(P1*exp(-lambda1*xt)+P2*exp(-lam2*xt))
return(list(y=y,poped.db=poped.db))
})
}
sfg <- function(x,a,bpop,b,bocc){
parameters=c(P1=exp(bpop[1]+b[1]),
P2=exp(bpop[2]+b[2]),
lam1a=exp(bpop[3]+b[3]),
lam1b=exp(bpop[3]+bpop[4]+b[3]),
lam2=exp(bpop[5]+b[4]),
TREAT=a[1])
return(parameters)
}
poped.db <- create.poped.database(ff_fun = ff,
fg_fun = sfg,
fError_fun = feps.add,
bpop=c(P1=12, P2=8,
lam1=-0.7,beta=0,lam2=-3.0),
d=c(P1=0.3, P2=0.3,
lam1=0.3,lam2=0.3),
sigma=c(0.065^2),
groupsize=100,
m=2,
xt=c(1, 3, 7, 14, 28, 56),
minxt=0,
maxxt=100,
a=list(c(TREAT=1),c(TREAT=2)))
plot_model_prediction(poped.db)
evaluate_design(poped.db)
poped.db_2 <- create.poped.database(poped.db,bpop=c(P1=12, P2=8,
lam1=-0.7,beta=0.262,lam2=-3.0))
plot_model_prediction(poped.db_2)
evaluate_design(poped.db_2)
evaluate_power(poped.db_2,bpop_idx = 4)
Run the code above in your browser using DataLab