readData(path,populations=FALSE,outgroup=FALSE,include.unknown=FALSE,
gffpath=FALSE,format="fasta",parallized=FALSE,
progress_bar_switch=TRUE, FAST=FALSE,big.data=FALSE,
SNP.DATA=FALSE
)## S3 method for class 'GENOME':
get.sum.data(object)
"GENOME"
FALSE
FALSE
"fasta"
is default. See detail !n.sites
total number of sites
2. n.biallelic.sites
number of biallelic sites
3. n.gaps
number of sites with gaps
4. n.unknowns
number of sites with unknown nucleotides
5. n.valid.sites
number of valid sites
6. n.polyallelic.sites
number of sites with >2 nucleotides
7. trans.transv.ratio
transition/transversion ratio of biallelic sites
8. region.names
names of each region
9. region.data
some detail data informations
}"fasta"
,"nexus"
,"phylip"
,
"MAF"
,"MEGA"
,"HapMap"
,"VCF"
,
"VCFhap"
(haploid),
"RData"
parallized:
- only works on UNIX, because of the multicore package.
- will speed up calculation if you use a huge amount of alignments
FAST:
- fast computation of biallelic matrix, biallelic sites, transversions/transitions
and biallelic substitutions
- can be switched to TRUE
in case of SNP-data without loosing informations
big.data:
- using the ff-package
- ff mechanism for biallelic.matrix and gff/gtf information
- is done automatically for readVCF or readSNP
- Note! should switch to TRUE, if you use big chunks
and you want to concatenate them in the PopGenome framework
(for example: sliding window of the whole data).
SNP.DATA:
- should be switched to TRUE
, if you use SNP-data in alignment format.
# GENOME.class <- readData("...\Alignments", FAST=TRUE)
# GENOME.class@region.names
# GENOME.class <- readData("...\Alignments", big.data=TRUE)
# object.size(GENOME.class)
# GENOME.class <- readData("...\Alignments",gffpath="...\Alignments_GFF")
# GENOME.class
# show the result:
# get.sum.data(GENOME.class)
# GENOME.class@region.data
Run the code above in your browser using DataLab