readData(path,populations=FALSE,outgroup=FALSE,include.unknown=FALSE,
gffpath=FALSE,format="fasta",parallized=FALSE,
progress_bar_switch=TRUE, FAST=FALSE,big.data=FALSE,
SNP.DATA=FALSE
)## S3 method for class 'GENOME':
get.sum.data(object)
"GENOME"FALSEFALSE"fasta" is default. See detail !n.sites total number of sites
2. n.biallelic.sites number of biallelic sites
3. n.gaps number of sites with gaps
4. n.unknowns number of sites with unknown nucleotides
5. n.valid.sites number of valid sites
6. n.polyallelic.sites number of sites with >2 nucleotides
7. trans.transv.ratio transition/transversion ratio of biallelic sites
8. region.names names of each region
9. region.data some detail data informations
}"fasta","nexus","phylip",
"MAF","MEGA","HapMap","VCF",
"VCFhap" (haploid),
"RData"
parallized:
- only works on UNIX, because of the multicore package.
- will speed up calculation if you use a huge amount of alignments
FAST:
- fast computation of biallelic matrix, biallelic sites, transversions/transitions
and biallelic substitutions
- can be switched to TRUE in case of SNP-data without loosing informations
big.data:
- using the ff-package
- ff mechanism for biallelic.matrix and gff/gtf information
- is done automatically for readVCF or readSNP
- Note! should switch to TRUE, if you use big chunks
and you want to concatenate them in the PopGenome framework
(for example: sliding window of the whole data).
SNP.DATA:
- should be switched to TRUE, if you use SNP-data in alignment format.
# GENOME.class <- readData("...\Alignments", FAST=TRUE)
# GENOME.class@region.names
# GENOME.class <- readData("...\Alignments", big.data=TRUE)
# object.size(GENOME.class)
# GENOME.class <- readData("...\Alignments",gffpath="...\Alignments_GFF")
# GENOME.class
# show the result:
# get.sum.data(GENOME.class)
# GENOME.class@region.dataRun the code above in your browser using DataLab