Learn R Programming

PopGenome (version 2.1.6)

F_ST.stats-methods: Fixation Index

Description

A generic function to calculate some F-statistics and nucleotide/haplotype diversities.

Usage

"F_ST.stats"( object, new.populations=FALSE, subsites=FALSE, detail=TRUE, mode="ALL", only.haplotype.counts=FALSE, FAST=FALSE )
"get.diversity"(object,between=FALSE) "get.F_ST"(object,mode=FALSE,pairwise=FALSE)

Arguments

object
An object of class "GENOME"
new.populations
list of populations. default:FALSE
subsites

"transitions": SNPs that are transitions. "transversions": SNPs that are transversions. "syn": synonymous sites. "nonsyn": nonsynonymous sites. "exon": SNPs in exon regions. "intron": SNPs in intron regions. "coding": SNPs in coding regions (CDS). "utr": SNPs in UTR regions. "gene": SNPs in genes. "intergenic" : SNPs in intergenic regions.

detail
detail statistics. Note: slower!
between
TRUE: show between-diversities. FALSE: show within-diversities
mode
mode="haplotype" or mode="nucleotide"
only.haplotype.counts
only calculate the haplotype counts
FAST
if TRUE only calculate a subset of statistics. see details!
pairwise
show paiwise comparisons. default:FALSE

Value

Slot Reference
Description 1. haplotype.F_ST
[1] Fixation Index based on haplotype frequencies 2.
nucleotide.F_ST [1] Fixation Index based on minor.allele frequencies
3. Nei.G_ST [2]
Nei's Fixation Index 4. Hudson.G_ST
[3] see reference ... 5.
Hudson.H_ST [3] see reference ...
6. Hudson.K_ST [3]
see reference ... 7. nuc.diversity.within
[1,5] Nucleotide diversity (within the population) 8.
hap.diversity.within [1] Haplotype diversity (within the population)
9. Pi [4]
Nei's diversity (within the population) 10. hap.F_ST.vs.all
[1] Fixation Index for each population against all other individuals (haplotype) 11.
nuc.F_ST.vs.all [1] Fixation Index for each population against tall other individuals (nucleotide)
12. hap.diversity.between [1]
Haplotype diversities between populations 13. nuc.diversity.between
[1,5] Nucleotide diversities between populations 14.
nuc.F_ST.pairwise [1] Fixation Index for every pair of populations (nucleotide)
15. hap.F_ST.pairwise [1]
Fixation Index for every pair of populations (haplotype) 16. Nei.G_ST.pairwise
[2] Fixation Index for every pair of populations (Nei) 17.
region.stats an object of class "region.stats" for detailed statistics

Details

If FAST is switched on, this module only calculates nuc.diversity.within, hap.diversity.within, haplotype.F_ST, nucleotide.F_ST and pi. Note: 1) The nucleotide diversities have to be devided by the size of region considered (e.g. GENOME@n.sites) to give diversities per site. 2) When missing or unknown nucleotides are included (include.unknown=TRUE) those sites are completely deleted in case of haplotype based statistics. 3) The function detail.stats(...,site.FST=TRUE) will compute SNP specific FST values which are then stored in the slot GENOME.class@region.stats@site.FST. 4) We recommend to use mode="nucleotide" in case you have many unknowns included in your dataset.

References

[1] Hudson, R. R., M. Slatkin, and W.P. Maddison (1992). Estimating levels of gene flow from DNA sequence data. Gentics 13(2),583-589 [2] Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proc.Natl. Acad. Sci. USA 70: 3321-3323 [3] Hudson, R. R., Boos, D.D. and N. L. Kaplan (1992). A statistical test for detecting population subdivison. Mol. Biol. Evol. 9: 138-151. [4] Nei, M. (1987). Molecular Evolutionary Genetics. Columbia Univ. Press, New York. [5] Wakeley, J. (1996).The Variance of Pairwise Nucleotide Differences in Two Populations with Migration. THEORETICAL POPULATION BIOLOGY. 49, 39-57.

See Also

# methods?F_ST.stats.2 #F_ST.stats.2

Examples

Run this code

# GENOME.class <- readData("\home\Alignments")
# GENOME.class
# GENOME.class <- F_ST.stats(GENOME.class)
# GENOME.class <- F_ST.stats(GENOME.class,list(1:4,5:10),subsites="syn")
# GENOME.class <- F_ST.stats(GENOME.class,list(c("seq1","seq5","seq3"),c("seq2","seq8")))
# show the result:
# get.F_ST(GENOME.class)
# get.F_ST(GENOME.class, pairwise=TRUE)
# get.diversity(GENOME.class, between=TRUE)
# GENOME.class@Pi --> population specific view
# GENOME.class@region.stats

Run the code above in your browser using DataLab