Learn R Programming

PopGenome (version 2.1.6)

linkage.stats-methods: Linkage Disequilibrium

Description

A generic function to calculate some linkage disequilibrium statistics.

Usage

## S3 method for class 'GENOME':
linkage.stats(object,new.populations=FALSE,subsites=FALSE,detail=FALSE,
			do.ZnS,do.WALL=TRUE)
## S3 method for class 'GENOME':
get.linkage(object)

Arguments

object
An object of class "GENOME"
new.populations
list of populations. default=FALSE
subsites
"transitions": SNPs that are transitions. "transversions": SNPs that are transversions. "syn": synonymous sites. "nonsyn": nonsynonymous sites. "exon": SNPs in exon regions. "int
detail
if you want to calculate some detailed statistics. This can be considerably slower! default:FALSE
do.ZnS
calculate ZnS, ZA and ZZ
do.WALL
calculate Wall's B/Q

Value

  • The return value is a modified object of class "GENOME" --------------------------------------------------------- The following slots will be modified in the "GENOME" object --------------------------------------------------------- rlll{ Slot Reference Description 1. Wall.B [2] Wall $B$ statistic (only adjacent positions are considered) 2. Wall.Q [2] Wall $Q$ statistic (only adjacent positions are considered) 3. Kelly.Z_nS [3] Kelly $Z_{n}S$ statistic (if detail==TRUE) 4. Rozas.ZA [1] Rozas $ZA$ statistic (adjacent positions, if detail==TRUE) 5. Rozas.ZZ [1] Rozas $ZZ$ statistic ($ZZ=ZA-Z_{n}S$, if detail==TRUE) }

Details

Note, the pairwise comparisons are computed via combn(n.snps,2).

References

[1] Rozas, J., M.Gullaud, G.Blandin, and M.Aguade(2001). DNA variation at the rp49 gene region of Drosophila simulans: evolutionary inferences from an unusual haplotype structure. Genetics 158(3),1147-1155 [2] Wall, J.(1999). Recombination and the power of statistical tests of neutrality. Genet Res 74, 65-79 [3] Kelly,J.K. (1997). A test of neutrality based on interlocus associations. Genetics 146: 1197-1206

Examples

Run this code
# GENOME.class <- readData("\home\Alignments")
# GENOME.class
# GENOME.class <- linkage.stats(GENOME.class)
# GENOME.class <- linkage.stats(GENOME.class,list(1:4,5:10),subsites="syn")
# GENOME.class <- linkage.stats(GENOME.class,list(c("seq1","seq5","seq3"),
# c("seq2","seq8")))
# GENOME.class <- linkage.stats(GENOME.class, detail=TRUE)
# show the result:
# get.linkage(GENOME.class)
# GENOME.class@Wall.B --> population specific view
# GENOME.class@region.stats

Run the code above in your browser using DataLab