readVCF(filename, numcols, tid, frompos, topos,
samplenames=NA, gffpath = FALSE, include.unknown=FALSE, approx=FALSE,
out="", parallel=FALSE)
"GENOME"
---------------------------------------------------------
The following slots will be filled in the "GENOME"
object
---------------------------------------------------------
n.sites
total number of sites
2. n.biallelic.sites
number of biallelic sites
3. region.data
some detailed information about the data read
4. region.names
names of regions
}approx=TRUE
, the algorithm will apply a logical OR to the GT-field:
(0|0=0,1|0=1,0|1=1,1|1=1). Note, this is an approximation for diploid data, which will
speed up calculations. In case of haploid data, approx
should be switched to TRUE
.
If approx=FALSE
, the full diploid information will be considered.
The ff-package PopGenome uses to store the SNP information limits total data size to
individuals * (number of SNPs) <= .machine$integer.max="" in="" case="" of="" very="" large="" data="" sets,="" the="" bigmemory="" package="" will="" be="" used;="" this="" slow="" down="" calculations="" (e.g.="" have="" to="" installed="" first="" !!!).="" use="" function="" vcf_handle <-.Call("VCF_open", filename)
to open a VCF-file and .Call("VCF_getSampleNames",vcf_handle)
to get and define the individuals which should be considered in the analysis.
See also readData(..., format="VCF") !=>
# GENOME.class <- readVCF("...\chr1.vcf.gz", 1000, "1", 1, 100000)
# GENOME.class
# GENOME.class@region.names
# GENOME.class <- neutrality.stats(GENOME.class,FAST=TRUE)
# show the result:
# get.sum.data(GENOME.class)
# GENOME.class@region.data
Run the code above in your browser using DataLab