Learn R Programming

PortfolioEffectHFT (version 1.6)

position_pdf: Probability Density Function of Position Returns

Description

Computes probability density of position returns for a given interval (pValueLeft, pValueRight) at nPoints of approximation. Probability density is computed based on a "densityModel" specified in portfolio_settings( ) method.

Usage

position_pdf(portfolio, symbol, pValueLeft, pValueRight, nPoints, addNormalDensity=FALSE)

Arguments

portfolio
Portfolio object created using portfolio_create( ) function.
symbol
Unique identifier of an instrument
pValueLeft
Left limit of probability density value in decimals.
pValueRight
Right limit of probability density value in decimals.
nPoints
Number of approximation points for the PDF function.
addNormalDensity
Flag used to add normal density to the final result. Defaults to FALSE.

Value

Examples

Run this code
## Not run: 
# data(aapl.data) 
# data(goog.data) 
# data(spy.data) 
# portfolio<-portfolio_create(priceDataIx=spy.data)
# portfolio_settings(portfolio,windowLength = '3600s',resultsSamplingInterval='60s')
# portfolio_addPosition(portfolio,'GOOG',100,priceData=goog.data)  
# portfolio_addPosition(portfolio,'AAPL',300,priceData=aapl.data) 
# portfolio_addPosition(portfolio,'SPY',150,priceData=spy.data)
# util_plotDensity(position_pdf(portfolio,'GOOG',pValueLeft=0.2,pValueRight=0.8,
# nPoints=100,addNormalDensity=TRUE))
# 
# dateStart = "2014-11-17 09:30:00"
# dateEnd = "2014-11-17 16:00:00"
# portfolio<-portfolio_create(dateStart,dateEnd)
# portfolio_settings(portfolio,portfolioMetricsMode="price",windowLength = '3600s',
# resultsSamplingInterval='60s')
# portfolio_addPosition(portfolio,'AAPL',100)
# portfolio_addPosition(portfolio,'C',300) 
# portfolio_addPosition(portfolio,'GOOG',150)
# util_plotDensity(position_pdf(portfolio,'AAPL',pValueLeft=0,pValueRight=1,
# nPoints=100,addNormalDensity=TRUE))
# ## End(Not run)

Run the code above in your browser using DataLab