Learn R Programming

PortfolioEffectHFT (version 1.7)

alpha_jensens: Jensen's Alpha

Description

Computes portfolio Jensen's alpha (excess return) according to the Single Index Model.

Usage

alpha_jensens(asset)

Arguments

asset
Portfolio or Position object created using portfolio_create( ) or position_add( ) function

Value

See Also

beta

Examples

Run this code
## Not run: 
# data(aapl.data) 
# data(goog.data) 
# data(spy.data) 
# portfolio=portfolio_create(spy.data)
# portfolio_settings(portfolio,windowLength = '3600s',resultsSamplingInterval='60s')
# positionGOOG=position_add(portfolio,'GOOG',100,priceData=goog.data)   
# positionAAPL=position_add(portfolio,'AAPL',300,priceData=aapl.data) 
# result=compute(alpha_jensens(portfolio),alpha_jensens(positionGOOG),alpha_jensens(positionAAPL)) 
# plot(alpha_jensens(portfolio),alpha_jensens(positionGOOG),alpha_jensens(positionAAPL),
# legend=c('Portfolio','GOOG','AAPL'),title="Jensen's Alpha")
# 
# dateStart = "2014-11-17 09:30:00"
# dateEnd = "2014-11-17 16:00:00"
# portfolio=portfolio_create(dateStart,dateEnd)
# portfolio_settings(portfolio,portfolioMetricsMode="price",windowLength = '3600s',
# resultsSamplingInterval='60s')
# positionAAPL=position_add(portfolio,'AAPL',100)
# positionC=position_add(portfolio,'C',300) 
# positionGOOG=position_add(portfolio,'GOOG',150) 
# result=compute(alpha_jensens(positionC),alpha_jensens(positionGOOG),alpha_jensens(positionAAPL)) 
# plot(alpha_jensens(positionC),alpha_jensens(positionGOOG),alpha_jensens(positionAAPL),
# legend=c('C','GOOG','AAPL'),title="Jensen's Alpha")
# ## End(Not run)

Run the code above in your browser using DataLab