Learn R Programming

PortfolioEffectHFT (version 1.7)

dist_density: Probability Density Function of Portfolio Returns

Description

Computes probability density of portfolio returns for a given interval (pValueLeft, pValueRight) at nPoints of approximation. Probability density is computed based on a "densityModel" specified in portfolio_settings( ) method.

Usage

dist_density(asset,pValueLeft,pValueRight,nPoints,addNormalDensity)

Arguments

asset
Portfolio or Position object created using portfolio_create( ) or position_add( ) function
pValueLeft
Left limit of probability density value in decimals.
pValueRight
Right limit of probability density value in decimals.
nPoints
Number of approximation points for the PDF function.
addNormalDensity
Flag used to add normal density to the final result. Defaults to FALSE.

Value

Examples

Run this code
## Not run: 
# 
# data(aapl.data) 
# data(goog.data) 
# data(spy.data) 
# portfolio=portfolio_create(priceDataIx=spy.data)
# portfolio_settings(portfolio,windowLength = '3600s',resultsSamplingInterval='60s')
# positionGOOG=position_add(portfolio,'GOOG',100,priceData=goog.data)   
# positionAAPL=position_add(portfolio,'AAPL',300,priceData=aapl.data) 
# util_plotDensity(dist_density(portfolio,pValueLeft=0.2,pValueRight=0.8,nPoints=100,
# addNormalDensity=TRUE))
# 
# dateStart = "2014-11-17 09:30:00"
# dateEnd = "2014-11-17 16:00:00"
# portfolio=portfolio_create(dateStart,dateEnd)
# portfolio_settings(portfolio,portfolioMetricsMode="price",windowLength = '3600s',
# resultsSamplingInterval='60s')
# positionAAPL=position_add(portfolio,'AAPL',100)
# positionC=position_add(portfolio,'C',300) 
# positionGOOG=position_add(portfolio,'GOOG',150) 
# util_plotDensity(dist_density(portfolio,pValueLeft=0,pValueRight=1,nPoints=100,
# addNormalDensity=TRUE))
# ## End(Not run)

Run the code above in your browser using DataLab