Learn R Programming

PosRatioDist (version 1.2.1)

dBilomaxPR: BilomaxPR

Description

probability density function of quotient of Bivariate Lomax random variables conditioned to the positive quadrant.For more detailed information please read the first reference paper.

Usage

dBilomaxPR(x, a, b, c, alpha, beta, theta)

Arguments

x

single positive scalar for quotient

a

parameter for Bivariate lomax distribution

b

parameter for Bivariate lomax distribution

c

parameter for Bivariate lomax distribution

alpha

parameter for Bivariate lomax distribution

beta

parameter for Bivariate lomax distribution

theta

parameter for Bivariate lomax distribution

Value

dBilomaxPR gives the probability density function for bivariate lomax random variables conditioned to the positive quadrant.

Invalid arguments will return an error message.

Details

Probability density function $$f_R (r \mid X > 0, Y > 0) = \frac {c^2 \theta^2 r}{\Pr (X > 0, Y > 0)} J_3 \left( \theta r, \beta - \theta a + \left( \alpha - \theta b \right) r, 1 - \alpha a - \beta b + \theta a b, c + 2 \right) +\frac {c^2 \theta \left[ (\alpha - \theta b) r + \beta - \theta a \right]} {\Pr (X > 0, Y > 0)} J_2 \left( \theta r, \beta - \theta a + \left( \alpha - \theta b \right) r, 1 - \alpha a - \beta b + \theta a b, c + 2 \right) +\frac {c \left[ c (\alpha - \theta b) (\beta - \theta a) + \alpha \beta - \theta \right]}{\Pr (X > 0, Y > 0)}J_1 \left( \theta r, \beta - \theta a + \left( \alpha - \theta b \right) r,1 - \alpha a - \beta b + \theta a b, c + 2 \right)$$

For \(r > 0\),\(\alpha > 0\), \(\beta > 0\), \(\theta > 0\), \(0 \leq \theta \leq (c + 1) \alpha \beta\) where \(J_1,J_2,J_3\) are given by first reference paper section (2.5)

References

Yuancheng Si and Saralees Nadarajah and Xiaodong Song, (2020). On the distribution of quotient of random variables conditioned to the positive quadrant. Communications in Statistics - Theory and Methods, 49, pp2514-2528.

Balakrishnan, N. and Lai, C. -D. (2009).Continuous Bivariate Distributions.Springer Verlag, New York.