```
# NOT RUN {
# some data:
# the values for AUC, study 1 and study 2 are Example 3 of H. Schuetz lecture
CVs <- ("
PKmetric | CV | n |design|source
AUC | 0.20 | 24 | 2x2 | study 1
Cmax | 0.25 | 24 | 2x2 | study 1
AUC | 0.30 | 12 | 2x2 | study 2
Cmax | 0.31 | 12 | 2x2 | study 2
AUC | 0.25 | 12 | 2x2x4| study 3 (replicate)
")
txtcon <- textConnection(CVs)
CVdata <- read.table(txtcon, header=TRUE, sep="|", strip.white=TRUE, as.is=TRUE)
close(txtcon)
# evaluation of the AUC CVs
CVsAUC <- subset(CVdata, PKmetric=="AUC")
CVpooled(CVsAUC, alpha=0.2, logscale=TRUE)
# df of the 'robust' evaluation
CVpooled(CVsAUC, alpha=0.2, logscale=TRUE, robust=TRUE)
#print also the upper CL, data example 3
CVsAUC3 <- subset(CVsAUC,design != "2x2x4")
print(CVpooled(CVsAUC3, alpha=0.2, robust=TRUE), digits=3, verbose=TRUE)
# will give the output:
#Pooled CV = 0.235 with 32 degrees of freedom (robust df's)
#Upper 80% confidence limit of CV = 0.266
# }
```

Run the code above in your browser using DataCamp Workspace