powered by
mdes.bira2c1 calculates minimum detectable effect size, power.bira2c1 calculates statistical power, mrss.bira2c1 calculates minimum required sample size.
mdes.bira2c1
power.bira2c1
mrss.bira2c1
mdes.bira2c1(power=.80, alpha=.05, two.tailed=TRUE, p=.50, g1=0, r21=0, n, J, ...) power.bira2c1(es=.25, alpha=.05, two.tailed=TRUE, p=.50, g1=0, r21=0, n, J, ...) mrss.bira2c1(es=.25, power=.80, alpha=.05, two.tailed=TRUE, n, J0=10, tol=.10, p=.50, g1=0, r21=0, ...)
power.bira2c1(es=.25, alpha=.05, two.tailed=TRUE, p=.50, g1=0, r21=0, n, J, ...)
mrss.bira2c1(es=.25, power=.80, alpha=.05, two.tailed=TRUE, n, J0=10, tol=.10, p=.50, g1=0, r21=0, ...)
statistical power \((1-\beta)\).
effect size.
probability of type I error.
logical; TRUE for two-tailed hypothesis testing, FALSE for one-tailed hypothesis testing.
TRUE
FALSE
average proportion of level 1 units randomly assigned to treatment within level 2 units.
number of covariates at level 1.
proportion of level 1 variance in the outcome explained by level 1 covariates.
harmonic mean of level 1 units across level 2 units (or simple average).
level 2 sample size.
starting value for J.
J
tolerance to end iterative process for finding J.
to handle depreciated or defunct arguments.
function name.
list of parameters used in power calculation.
degrees of freedom.
noncentrality parameter.
minimum detectable effect size.
number of level 2 units.
# NOT RUN { # cross-checks mdes.bira2c1(n=15, J=20) power.bira2c1(es=.325, n=15, J=20) mrss.bira2c1(es=.325, n=15) # }
Run the code above in your browser using DataLab