powered by
mdes.cra2r2 calculates minimum detectable effect size, power.cra2r2 calculates statistical power, mrss.cra2r2 calculates minimum required sample size.
mdes.cra2r2
power.cra2r2
mrss.cra2r2
mdes.cra2r2(power=.80, alpha=.05, two.tailed=TRUE, rho2, p=.50, g2=0, r21=0, r22=0, n, J, ...)power.cra2r2(es=.25, alpha=.05, two.tailed=TRUE, rho2, g2=0, p=.50, r21=0, r22=0, n, J, ...)mrss.cra2r2(es=.25, power=.80, alpha=.05, two.tailed=TRUE, n, J0=10, tol=.10, rho2, g2=0, p=.50, r21=0, r22=0, ...)
power.cra2r2(es=.25, alpha=.05, two.tailed=TRUE, rho2, g2=0, p=.50, r21=0, r22=0, n, J, ...)
mrss.cra2r2(es=.25, power=.80, alpha=.05, two.tailed=TRUE, n, J0=10, tol=.10, rho2, g2=0, p=.50, r21=0, r22=0, ...)
statistical power \((1-\beta)\).
effect size.
probability of type I error.
logical; TRUE for two-tailed hypothesis testing, FALSE for one-tailed hypothesis testing.
TRUE
FALSE
proportion of variance in the outcome explained by level 2 units.
proportion of level 2 units randomly assigned to treatment.
number of covariates at level 2.
proportion of level 1 variance in the outcome explained by level 1 covariates.
proportion of level 2 variance in the outcome explained by level 2 covariates.
harmonic mean of level 1 units across level 2 units (or simple average).
level 2 sample size.
starting value for J.
J
tolerance to end iterative process for finding J.
to handle depreciated or defunct arguments.
function name.
list of parameters used in power calculation.
degrees of freedom.
noncentrality parameter.
minimum detectable effect size.
number of level 2 units.
cosa.crd2r2
# NOT RUN { # cross-checks mdes.cra2r2(rho2=.17, n=15, J=20) power.cra2r2(es=.629, rho2=.17, n=15, J=20) mrss.cra2r2(es=.629, rho2=.17, n=15) # }
Run the code above in your browser using DataLab