powered by
mdes.ira1r1 calculates minimum detectable effect size, power.ira1r1 calculates statistical power, mrss.ira1r1 calculates minimum required sample size.
mdes.ira1r1
power.ira1r1
mrss.ira1r1
mdes.ira1r1(power=.80, alpha=.05, two.tailed=TRUE, p=.50, g1=0, r21=0, n, ...)power.ira1r1(es=.25, alpha=.05, two.tailed=TRUE, p=.50, g1=0, r21=0, n, ...)mrss.ira1r1(es=.25, power=.80, alpha=.05, two.tailed=TRUE, n0=10, tol=.10, p=.50, g1=0, r21=0, ...)
power.ira1r1(es=.25, alpha=.05, two.tailed=TRUE, p=.50, g1=0, r21=0, n, ...)
mrss.ira1r1(es=.25, power=.80, alpha=.05, two.tailed=TRUE, n0=10, tol=.10, p=.50, g1=0, r21=0, ...)
statistical power \((1-\beta)\).
effect size.
probability of type I error.
logical; TRUE for two-tailed hypothesis testing, FALSE for one-tailed hypothesis testing.
TRUE
FALSE
proportion of units randomly assigned to treatment.
number of covariates.
proportion of variance in the outcome explained by covariates.
sample size.
starting value for n.
n
tolerance to end iterative process for finding n.
to handle depreciated or defunct arguments.
function name.
list of parameters used in power calculation.
degrees of freedom.
noncentrality parameter.
minimum detectable effect size.
power.ird1r1
# NOT RUN { # cross-checks mdes.ira1r1(n=250) power.ira1r1(es=.356, n=250) mrss.ira1r1(es=.356) # }
Run the code above in your browser using DataLab