iidpred(train,test,epsilons=c(0.05,0.01),ridge=0)epsilons[$j$] is a number between 0 and 1.
The default value is (5%,1%).output[[1]][$i$,$j$] of output[[1]]
is the lower bound $a$ of the prediction interval $[a,b]$
for the $i-$th test observation
and for the $j-$th significance level epsilons[$j$]
in the vector epsilons.output[[1]].
Typically $a =$output[[1]][$i$,$j$]
and $b = $output[[2]][$i$,$j$] are real numbers
such that $a <= b$.="" exceptions:="" $a$="" is="" allowed="" to="" be="" $-infinity$="" and="" $b$="" $infinity$;="" the="" only="" case="" where="" $a=""> b$
is $a = infinity$ and $b = -infinity$
(the empty prediction $[a,b]$).=>Vovk, V., Gammerman, A., and Shafer, G. (2005) Algorithmic Learning in a Random World. New York: Springer. This program implements the algorithm described on pages 30 - 34 of this book.
train <- matrix(c(0,10,20,30, 1.01,10.99,21.01,30.99), nrow=4, ncol=2);
test <- matrix(c(5,15,25), nrow=3, ncol=1);
output <- iidpred(train,test,c(0.05,0.2),0.01);
print(output[[1]]);
print(output[[2]]);
Run the code above in your browser using DataLab