# \donttest{
mod = bayes_met(data = soy_pat,
gen = "gen",
loc = "env",
repl = NULL,
trait = "PH",
reg = NULL,
year = NULL,
res.het = TRUE,
iter = 2000, cores = 2, chain = 4)
mod2 = bayes_met(data = soy_pat,
gen = "gen",
loc = "env",
repl = NULL,
trait = "GY",
reg = NULL,
year = NULL,
res.het = TRUE,
iter = 2000, cores = 2, chain = 4)
mod3 = bayes_met(data = soy_pat,
gen = "gen",
loc = "env",
repl = NULL,
trait = "NDM",
reg = NULL,
year = NULL,
res.het = TRUE,
iter = 2000, cores = 2, chain = 4)
models=list(mod,mod2,mod3)
names(models) <- c("PH","GY","NDM")
increase = c(FALSE,TRUE,FALSE)
names(increase) <- names(models)
probs = list()
for (i in names(models)) {
outs <- extr_outs(model = models[[i]],
probs = c(0.05, 0.95),
verbose = TRUE)
probs[[i]] <- prob_sup(
extr = outs,
int = .2,
increase = increase[[i]],
save.df = FALSE,
verbose = TRUE
)
}
index = bpsi(
problist = probs,
increase = increase,
int = 0.1,
lambda = c(1, 2, 1),
save.df = FALSE
)
plot(index, category = "BPSI")
plot(index, category = "Ranks")
# }
Run the code above in your browser using DataLab