Learn R Programming

ProbReco (version 0.1.2)

scoreopt.control: Tuning parameters for score optimisation by Stochastic Gradient Descent

Description

Function to set tuning parameters for stochastic gradient descent used to find a reconciliation matrix that optimises total score. The defaults are those of adam;textualProbReco and more details on the tuning parameters can be found therein.

Usage

scoreopt.control(
  eta = 0.001,
  beta1 = 0.9,
  beta2 = 0.999,
  maxIter = 500,
  tol = 1e-04,
  epsilon = 1e-08
)

Arguments

eta

Learning rate. Deafult is 0.001

beta1

Forgetting rate for mean. Default is 0.9.

beta2

Forgetting rate for variance. Default is 0.999.

maxIter

Maximum number of iterations. Default is 500

tol

Tolerance for stopping criterion. Algorithm stops when the change in all parameter values is less than this amount. Default is 0.0001.

epsilon

Small constant added to denominator of step size. Default is 1e-8

References

See Also

Other ProbReco functions: inscoreopt(), scoreopt(), total_score()

Examples

Run this code
#Change Maximum Iterations to 1000
scoreopt.control(maxIter=1000)

Run the code above in your browser using DataLab