set.seed(12265)
yk<-rnorm(100,mean=50,sd=5)
zk<-rnorm(100,mean=51,sd=5)
yk.p<-as.factor(ifelse(yk>50,"A","B"))
set.seed(12245)
# Información Auxiliar
xk<-yk*runif(100,min=0.9,max=1.1)
r<-cor(yk,xk)
selection<-PiPT(xk=xk,n=10,type="selec")
PiPT(yk=yk[selection$Ksel],pik=selection$pik,mpikl=selection$mpikl.s,
type="estm",parameter="total")
PiPT(yk=yk[selection$Ksel],pik=selection$pik,mpikl=selection$mpikl.s,
type="estm",parameter="mean")
PiPT(yk=yk.p[selection$Ksel],pik=selection$pik,mpikl=selection$mpikl.s,
type="estm",parameter="prop")
PiPT(yk=yk[selection$Ksel],zk=zk[selection$Ksel],pik=selection$pik,
mpikl=selection$mpikl.s,type="estm",parameter="ratio")
# Domain Estimate
Sex<-rep(1:2,length=100)
dk<-factor(Sex,labels=c("Man","Woman"))
PiPT(yk=yk[selection$Ksel],pik=selection$pik,mpikl=selection$mpikl.s,
dk=dk[selection$Ksel],type="estm.Ud",parameter="total")
PiPT(yk=yk[selection$Ksel],pik=selection$pik,mpikl=selection$mpikl.s,
dk=dk[selection$Ksel],type="estm.Ud",parameter="mean")
PiPT(yk=yk.p[selection$Ksel],pik=selection$pik,mpikl=selection$mpikl.s,
dk=dk[selection$Ksel],type="estm.Ud",parameter="prop")
PiPT(yk=yk[selection$Ksel],zk=zk[selection$Ksel],pik=selection$pik,
mpikl=selection$mpikl.s,dk=dk[selection$Ksel],type="estm.Ud",
parameter="ratio")
Run the code above in your browser using DataLab