# NOT RUN {
data(Katrina)
attach(Katrina)
table(y1) # 300 of the 673 firms reopened during 0-3 months horizon, p.1016
table(y2) # 425 of the 673 firms reopened during 0-6 months horizon, p.1016
table(y3) # 478 of the 673 firms reopened during 0-12 months horizon, p.1016
detach(Katrina)
# replicate LeSage et al. (2011), Table 3, p.1017
require(spdep)
# (a) 0-3 months time horizon
# LeSage et al. (2011) use k=11 nearest neighbors in this case
nb <- knn2nb(knearneigh(cbind(Katrina$lat, Katrina$long), k=11))
listw <- nb2listw(nb, style="W")
W1 <- as(as_dgRMatrix_listw(listw), "CsparseMatrix")
fit1_cond <- ProbitSpatialFit(y1 ~ flood_depth + log_medinc + small_size +
large_size +low_status_customers + high_status_customers +
owntype_sole_proprietor + owntype_national_chain,
W=W1, data=Katrina, DGP='SAR', method="conditional", varcov="varcov")
summary(fit1_cond)
fit1_FL <- ProbitSpatialFit(y1 ~ flood_depth + log_medinc + small_size +
large_size +low_status_customers + high_status_customers +
owntype_sole_proprietor + owntype_national_chain,
W=W1, data=Katrina, DGP='SAR', method="full-lik", varcov="varcov")
summary(fit1_FL)
fit1_cond_10nn <- ProbitSpatialFit(y1 ~ flood_depth+ log_medinc+ small_size+
large_size +low_status_customers + high_status_customers +
owntype_sole_proprietor + owntype_national_chain,
W=W1, data=Katrina, DGP='SAR', method="conditional", varcov="varcov",
control=list(iW_CL=10))
summary(fit1_cond_10nn)
# (b) 0-6 months time horizon
# LeSage et al. (2011) use k=15 nearest neighbors
nb <- knn2nb(knearneigh(cbind(Katrina$lat, Katrina$long), k=15))
listw <- nb2listw(nb, style="W")
W2 <- as(as_dgRMatrix_listw(listw), "CsparseMatrix")
fit2_cond <- ProbitSpatialFit(y2 ~ flood_depth + log_medinc + small_size +
large_size + low_status_customers + high_status_customers +
owntype_sole_proprietor + owntype_national_chain,
W=W2, data=Katrina, DGP="SAR", method="full-lik", varcov="varcov")
summary(fit2_cond)
fit2_FL <- ProbitSpatialFit(y2 ~ flood_depth + log_medinc + small_size +
large_size + low_status_customers + high_status_customers +
owntype_sole_proprietor + owntype_national_chain,
W=W2, data=Katrina, DGP="SAR", method="full-lik", varcov="varcov")
summary(fit2_FL)
# (c) 0-12 months time horizon
# LeSage et al. (2011) use k=15 nearest neighbors as in 0-6 months
W3 <- W2
fit3_cond <- ProbitSpatialFit(y3 ~ flood_depth + log_medinc + small_size +
large_size + low_status_customers + high_status_customers +
owntype_sole_proprietor + owntype_national_chain,
W=W3, data=Katrina, DGP="SAR", method="conditional", varcov="varcov")
summary(fit3_cond)
fit3_FL <- ProbitSpatialFit(y3 ~ flood_depth + log_medinc + small_size +
large_size + low_status_customers + high_status_customers +
owntype_sole_proprietor + owntype_national_chain,
W=W3, data=Katrina, DGP="SAR", method="full-lik", varcov="varcov")
summary(fit3_FL)
# replicate LeSage et al. (2011), Table 4, p.1018
# SAR probit model effects estimates for the 0-3-month time horizon
effects(fit1_cond)
# replicate LeSage et al. (2011), Table 5, p.1019
# SAR probit model effects estimates for the 0-6-month time horizon
effects(fit2_cond)
# replicate LeSage et al. (2011), Table 6, p.1020
# SAR probit model effects estimates for the 0-12-month time horizon
effects(fit3_cond)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab