Last chance! 50% off unlimited learning
Sale ends in
lfdr.bbe
).
When p0 = 1 the estimator is called BBE1 (use lfdr.bbe1
).
lfdr.bbe(pvalue, p0 = NULL, robust = FALSE, monotonic = FALSE, ...)
lfdr.bbe1(pvalue, robust = FALSE, monotonic = FALSE, ...)
lfdr.bbe1
p0=1, while for lfdr.bbe
it can be set or it can be estimated internally by p0est
, setting p0=NULL
(the default value).robust=TRUE
, the estimate is more robust for small p-values. If robust=TRUE
, the estimate is more robust for small p-values (see package qvalue
).monotonic=TRUE
, LFDR estimates are monotonically increasing with p-values.p0est
.Padilla, M., & Bickel, D. R. (2012). Estimators of the local false discovery rate designed for small numbers of tests. Statistical Applications in Genetics and Molecular Biology, 11(5), art. 4.
qvalue
package and p0est
and nqvalue
.
# a p-values vector with missing elements
pp <- runif(15) ;pp[c(13,2,5)]<-NA
#BBE1:
z1 <- lfdr.bbe1(pvalue = pp, robust = TRUE)
z2 <- lfdr.bbe1(pvalue = pp, robust = FALSE, monotonic = TRUE)
#estimating or setting p0:
z3 <- lfdr.bbe(pvalue = pp, p0 = NULL)
z4 <- lfdr.bbe(pvalue = pp, pi0.method = "bootstrap")
z5 <- lfdr.bbe(pvalue = pp, p0 = 0.8, robust = TRUE, monotonic = TRUE)
Run the code above in your browser using DataLab