review = text2vec::movie_review # a data.frame'
text = review$review
## Note: All the examples train 50 dims for faster code check.
## Word2Vec (SGNS)
dt1 = train_wordvec(
text,
method="word2vec",
model="skip-gram",
dims=50, window=5,
normalize=TRUE)
dt1
most_similar(dt1, "Ive") # evaluate performance
most_similar(dt1, ~ man - he + she, topn=5) # evaluate performance
most_similar(dt1, ~ boy - he + she, topn=5) # evaluate performance
## GloVe
dt2 = train_wordvec(
text,
method="glove",
dims=50, window=5,
normalize=TRUE)
dt2
most_similar(dt2, "Ive") # evaluate performance
most_similar(dt2, ~ man - he + she, topn=5) # evaluate performance
most_similar(dt2, ~ boy - he + she, topn=5) # evaluate performance
## FastText
dt3 = train_wordvec(
text,
method="fasttext",
model="skip-gram",
dims=50, window=5,
normalize=TRUE)
dt3
most_similar(dt3, "Ive") # evaluate performance
most_similar(dt3, ~ man - he + she, topn=5) # evaluate performance
most_similar(dt3, ~ boy - he + she, topn=5) # evaluate performance
Run the code above in your browser using DataLab