linksrm_convert(params, abc=TRUE)
TRUE
(default), then the input value of params is that of the abc
parameterisation. See Details for further explanation.
abc
parameterisation.
abc
parameterisation.
abc
parameterisation.
abc == TRUE
, the conditional intensity for the $i$th region is assumed to have the form
$$
\lambda_g(t,i | {\cal H}_t) = \exp\left\{ a_i + b_i\left[t - \sum_{j=1}^n c_{ij} S_j(t)\right]\right\}
$$
with params
$ = (a_1, ..., a_n, b_1, ..., b_n, c_{11}, c_{12}, c_{13}, ..., c_{nn})$.If abc == FALSE
, the conditional intensity for the $i$th region is assumed to have the form
$$
\lambda_g(t,i | {\cal H}_t) = \exp\left\{ \alpha_i + \nu_i\left[\rho_i t - \sum_{j=1}^n \theta_{ij} S_j(t)\right]\right\}
$$
where $theta_{ii}=1$ for all $i$, $n = sqrt(length(params) + 1) - 1$, and
params
$$ = (\alpha_1, \cdots, \alpha_n, \nu_1, \cdots, \nu_n, \rho_1, \cdots, \rho_n, \theta_{12}, \theta_{13}, \cdots, \theta_{1n}, \theta_{21}, \theta_{23}, \cdots, \theta_{n,n-1}).$$
linksrm_gif